Cyclobutane Synthesis Chem 115

Cyclobutane Synthesis Chem 115

Myers Cyclobutane Synthesis Chem 115 Reviews: • Intramolecular [2+2] Cycloadditions: Hoffmann, N. Chem. Rev. 2008, 108, 1052–1103. • Intramolecular [2+2] cycloadducts are readily formed. Tethers are typically 2 to 4 atom: Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003, 103, 1449–1484. Crimmins, M. T. Chem. Rev. 1988, 88, 1453–1473. Bach, T. Synthesis 1998, 683–703. H C O CH3 3 h$ O * Challenges: O hexanes OBz • Cyclobutanes are highly strained: H C OBz 98%, dr = 92:8 3 H OBz minimize non-bonded interactions 1. LHMDS Strain energy in kcal/mol 27.5 26.3 6.2 0.1 MeI (2 equiv) H C CH THF 3 3 CH H3C H3C CH3 3 O –70 " 0 ºC H BF •Et O H3C CH3 H3C 3 2 6 steps H Wiberg, K. B. Angew. Chem. Int. Ed. 1986, 25, 312–322. • 2. KOH, DMSO • 25 ºC, 36% C6H6, 80 °C CH 50% H Synthetic Methods For the Construction of Cyclobutanes: 3 H C H 3 O • [2+2] Cycloadditions: #8,9-capnellene epi-precapnelladiene • Suprafacial [2+2] cycloadditions are photochemically allowed but thermally forbidden. • Frontier Molecular Orbital Analysis: Birch, A. M.; Pattenden, G. J. Chem. Soc., Chem. Commun. 1980, 1195–1197. Birch, A. M.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1, 1983, 1913–1917. • Intermolecular [2+2] Cycloadditions • Regioselectivity issues: head-to-tail (HT) vs. head-to-head (HH) Thermal Photochemical LUMO of one ethylene unit !* !* O O O X h$ R HOMO of one ethylene unit ! !* one ethylene unit is photoexcited R R suprafacial [2+2] suprafacial [2+2] symmetry forbidden symmetry allowed HT HH • Enones are generally used as they are more easily photoexcited than isolated olefins. • Generally: • Photoexcited enones react via the T1 (triplet excited state). HT-isomer favored when R = donor (electron donating) • Quantum efficiencies are higher in cyclic systems due to rapid intersystem crossing. HH-isomer favored when R = acceptor (electron withdrawing) • Acyclic and macrocyclic enones are typically not suitable for [2+2] photocycloaddition because upon photoexcitation, they undergo cis/trans isomerization. Danica Rankic 1 Myers Cyclobutane Synthesis Chem 115 • An Example of Regioselectivity Governed by Electronics • Ketene [2+2] Cycloadditions • Antarafacial [2+2] cycloadditions are thermally allowed but geometrically disfavored for most substrates. O O O h! H H R • Ketenes are linear and sterically less encumbered, making them good substrates for thermal [2+2] HN HN HN * cycloadditions. H3C H3C * H3C R R • Frontier Molecular Orbital Analysis: H3C H3C H H3C H HH HT R d.r. (HT : HH) O C CN 18 : 82 C O C OEt 95 : 5 C • Both HT and HH products were obtained as a mixture of two diastereomers. LUMO HOMO Suishu, T.; Shimo, T.; Somekawa, K. Tetrahedron 1997, 53, 3545–3556. of C=C=O of C=C ketene alkene • Stereoselectivity in Intermolecular [2+2] Cycloadditions • The least hindered transition state usually dominates. There is no "endo" effect, as in the Diels- • Ketenes can be generated in situ from acid chlorides: Alder Reaction: CH O CH O CH 3 3 H CH CH 3 H3CO2C CO2CH3 CH3 3 3 h!, CH2Cl2 NEt3, CH2Cl2 H C H C 3 + 3 O Cl O + O 23 ºC, 49% 40 ºC, 70% CH CH O O O 3 CH H 3 H H 3 CH3 CH3 HO H 3.4 : 1 (separable by chromatography) (+)-grandisol Wilson, S. R.; Phillips, L. R.; Pelister, Y.; Huffman, J. C. J. Am. Chem. Soc. 1979, 101, 7373–7379. • When the double bond is not constrained within a rigid ring system, the intermediate triplet state Mori, K.; Miyake, M. Tetrahedron 1987, 43, 2229–2239. diradical can lead to cis/trans isomerization of the double bond: H C 3 h!, pentane + H3C 23 ºC, 73% H CH3 H3C Cl H C H C Zn, POCl3 O 3 Cl3C Cl + 3 Cl O Et O, 40 ºC H3C H 2 O H3C H H CH O 78% 3 h!, pentane O mixture of cis and + trans isomers H3C 23 ºC, 63% O Krepski, L. R.; Hassner, A. J. Org. Chem. 1978, 43, 2879–2882. Corey, E. J.; Bass, J. D.; LeMahieu, R.; Mitra, R. B. J. Am. Chem. Soc. 1964, 86, 5570–5583. Danica Rankic, Fan Liu 2 Myers Cyclobutane Synthesis Chem 115 • Examples of [2+2] Cycloaddition in Synthesis • A [2+2] Cycloaddition followed by radical fragmentation provided a key intermediate to guanacastepene E: • Synthesis of pentacycloanammoxic acid, the principal lipid component of the cell membrane of O PMP the anaerobic microbe Candidatus Brocadia anammoxidans: O O O O PMP h!, i-Pr2NEt O O Et O, 82% 1. (COCl)2, DMF i-Pr CH3 CH 2 i-Pr CH 3 H3C 3 h!, MeCN 4 steps CH Cl , 23 ºC O 2 2 1. SmI2, HMPA –15 ºC, 78 ºC 2. Br CO2H THF, 23 ºC 2. PhSeBr, 50% N S 3. mCPBA, CH2Cl2 ONa t-BuOK –78 ºC, 86% BrCCl3, 75 ºC, DMSO O O O PMP DMAP 50 ºC, 84% H OH 5 steps O h!, 10 ºC, 79% AcO O O i-Pr CH3 CH3 i-Pr H C CH3 guanacastepene E 3 12 steps Si(CH ) Ph Shipe, W. D.; Sorensen, E. J. J. Am. Chem. Soc. 2006, 128, 7025–7035. O 3 2 • A late-stage coupling reaction provided access to biyouyanagin A: h!, MeCN (CH2)7CO2CH3 23 ºC, 50% Ph(H3C)2Si pentacycloanammoxic acid H H C H H C CH 3 CH CH 3 3 CH H 3 O 3 H H H O 3 Mascitti, V.; Corey, E. J. J. Am. Chem. Soc. 2006, 128, 3118–3119. CH3 h!, CH2Cl2 CH3 • A [2+2] cycloaddition/anionic oxy-Cope/electrocyclic ring opening cascade provided a key O O Ph O 2'-acetonaphthone O intermediate to periplanone B. Note that both diastereomers from the [2+2] cycloaddition step can H Ph CH O 25 ºC, 46% H C O be converted to the final product: 3 3 O 1. Et O, Nicolaou, K. C.; Sarlah, D.; Shaw, D. M. Angew. Chem. Int. Ed. 2007, 46, 4708–4711. O 2 MgBr CH3 h!, Et2O –78 ºC, 63% • A [2+2] photocycloaddition followed by acid-catalyzed rearrangement provided a key intermediate H CH3 to steviol: CH3 72%, dr = 2:1 2. KH, 18-C-6 H CH3 THF, 60 ºC O H C CH h!, CH Cl 2 • 2 75% H3C 2 2 H3C CH O 23 ºC, 82% HO 3 1. O3, MeOH CH3 HO –78 ºC H2C CH2 2. Me S, 23 ºC O O • 2 1. toluene, 175 ºC 3. AcOH, PPA 110 ºC, 62% CH3 CH3 H C 2. C6H6, h! 3 O CH 70–75% CH 3 3 HO CH3 O Schreiber, S. L.; Santini, C. J. Am. Chem. Soc. 1984, 106, 4038–4039. Cherney, E. C.; Green, J. C.; Baran, P. S. Angew. Chem. Int. Ed. 2013, 52, 9019–9022. Fan Liu 3 Myers Cyclobutane Synthesis Chem 115 • The synthesis of longifolene was accomplished via a de Mayo reaction –– a [2+2] cycloaddition • In the synthesis of ginkgolide B, three contiguous stereogenic centers were established using an followed by retro-Aldol fragmentation: intramolecular ketene [2+2] cycloaddition reaction: H3CO O O O O OCbz OCbz 1. (COCl)2, C6H6 O h", C6H12 H2, Pd/C 23 ºC Ph3C OH H 15–30 ºC, 83% AcOH, 25 ºC 2. n-Bu3N, toluene 1N NaOH H H H H O dr = 2:3 O 83% 110 ºC, 71–87% acetone O O O CO2H O –30 ºC, 86% H3C PPh3 steps – O Br HO H3C NaOt-amyl OH CH3 H O toluene, 25 ºC O 4 steps 88% O H O t-Bu H C H HO H 3 H3C O O O Longifolene Ginkgolide B Corey, E. J.; Kang, M.-C.; Desai, M. C.; Ghosh, A. K.; Houpis, I. N. J. Am. Chem. Soc. 1988, 110, 649– Oppolzer, W.; Godel, T. J. Am. Chem. Soc. 1978, 100, 2583–2584. 651. • Synthesis of clovene via a ketene [2+2] thermal cycloaddition: • Synthesis of retigeranic acid via a ketene [2+2] cycloaddition followed by cyclobutane ring expansion: 1. Li H3C CH3 H3C N Cl H3C H H3C SCH3 CO H H O H3CS 2 1. (COCl)2, C6H6, 23 ºC CH3 CH SCH H 3 3 H CH3 SMe 2. Et N, 23 ºC, 80 % H Et3N, CH3CN O THF, –78 ºC 3 CO2H SMe H H 80 ºC, 35–47% H3C 2. HCl, CHCl3 H C O CH3 3 CH 66% 3 1. Li 1. NaH, MeI, SCH H3C 3 DME, 75% SCH3 2. Raney Ni, H C THF, –78 ºC CH3 3 H acetone, 79% H3C H H3C H CH 73% CH3 1. H2NNHTs, MeOH CH 5 steps 3 H H 3 H H 2. CuOTf, Et3N H C H 3 2. BuLi, TMEDA; H C C6H6, 23 ºC 3 O H3C + H CH3 H 3. NaIO , H O H3O , 55% H3C CO H 4 2 O H3C 2 H3C clovene CH3 CH3 dioxane Bamford-Stevens-Shapiro Reaction 4. Al/Hg, THF retigeranic acid H2O, 0 ! 23 ºC Funk, R. L.; Novak, P. M.; Abelman, M. M. Tetrahedron Lett. 1988, 29, 1493–1496. Corey, E. J.; Desaid, M.; Engler, T. A. J. Am. Chem. Soc. 1985, 107, 4339–4341. Fan Liu 4 Myers Cyclobutane Synthesis Chem 115 • Formal [2+2] Cycloadditions: Michael-Aldol Mechanism • Upon activation by triflic anhydride, C2-symmetric chiral pyrrolidine amides form keteniminium • Silyl enol ethers and !,"-unsaturated compounds form cyclobutanes in a stepwise, Lewis acid- salts, which undergo thermal [2+2] cycloadditions with excellent stereoselectivities: catalyzed process. • In the following example, the bulky tris(trimethylsilyl)silyl (TTMSS) protecting group is required to stabilize the cationic intermediate.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us