Small Satellite Fly-By Mission to the Moon LASAR-SAT Mission PDR NANOSTAR consortium Project funded by the Interreg Sudoe Programme through the European Regional Development Fund (ERDF) I of 93 NANOSTAR STUDENT CHALLENGE Small Satellite Fly-By Mission to the Moon LASAR-SAT Mission PDR May 2019, Madrid Universidad Carlos III de Madrid Master’s Degree in Aeronautical Engineering Space Systems Design. “We would like to give special thanks to all those Americans who built the spacecraft; who did the construction, design, the tests, and put their hearts and all their abilities into those craft. To those people tonight, we give a special thank you, and to all the other people that are listening and watching tonight, God bless you. Good night from Apollo 11” Neil Armstrong, July 23, 1963 EXECUTIVE ABSTRACT This document gathers the Preliminary Design of a nanosatellite fly-by mission to the Moon as a response to the NANOSTAR Student Challenge 2019, in which 7 universities, 2 aerospace clusters and 3 ESA Business Incubation Centres in France, Spain and Portugal are involved. The main goal of the presented design is to provide a suitable Space Segment which enables the accomplishment of the target mission. This one, pursues the acquisition of science data during the periselenium pass from altitudes above the Moon’s surface as low as 100 km. Due to the nature of the mission, high accurate systems are to be designed in order to provide an adequate support for the optical camera system payload which will be operative taking images of lunar soil just during the periselenium pass. Therefore, margins on design and redundancy of the critical components have been considered and included in all pertinent computations. In fact, those two aspects are of great relevancy on the performed design. They are considered to aid to minimise the associated risk of the mission, mitigating the undeniable inability to access the space environment and carry out repairs or upgrades. The performed work is based on a collaborative and flexible but organized methodology, in which own developed tools are used to enhance the parametric analysis and cover of a wider spectrum of design possibilities. Engineering tools such as MATLAB, Microsoft Excel, IDM tools or ESATAN-TMC are considered key ones to conduct the necessary analyses and results monitoring. The final preliminary design solution comes across after performing several trade-off analysis and iterations on each of the subsystem, evaluating alternative proposals and both updating and verifying low level requirements frequently. The targets of design weighted on the trade-off analysis until a suitable compromise solutions is portrayed, have been mainly focused on balancing factors such as functionality, mass budget, power budget and thermal behaviour, among others. Therefore, the one proposed by LASAR-SAT engineer’s team encompasses the following mission Quick Facts, which are the result of a design philosophy based mainly on simplicity and reliability. - Ground Station: Kourou S-Band Station at French Guiana in South America. - Structure characteristics: Overall mass (margins included) of 8.84 kg. Total volume 3U. Van Allen charged particles shielding. - Thruster: Ion-thruster BUSEK BIT-3. - Propellant: Solid Iodine. - Orbit: Apogee raising transfer until Earth-Moon distance. - Mission duration: 18.4 months 30 h in close Moon phase. Positive fly-by on the order of minutes. - Power: Daylight: 54.5W Eclipse: 14.75 W Solar arrays 0.123m2 GaAs Lithium-Ion Batteries - AOCS 3-axis stabilization Sensors: Startracker + Gyro, Sun sensors Actuators: RW + desaturation system - Thermal Control Passive approach. Project funded by the Interreg Sudoe Programme through the European Regional Development Fund (ERDF) I TABLE OF CONTENTS EXECUTIVE ABSTRACT ........................................................................................................................................................ I List of Figures........................................................................................................................................................................ IV List of Tables ........................................................................................................................................................................... V ACRONYMS ............................................................................................................................................................................ VI 1. INTRODUCTION .............................................................................................................................................................. 1 Team organisation ................................................................................................................................................................ 2 Work Logic ............................................................................................................................................................................ 2 2. MISSION OVERVIEW AND REQUIREMENTS FLOWDOWN ........................................................................ 3 State of the Art ..................................................................................................................................................................... 3 System segments and mission goals ..................................................................................................................................... 4 Requirements Flowdown ...................................................................................................................................................... 5 3. SUBSYSTEMS ANALYSIS AND DESIGN .............................................................................................................. 6 3.1 Mission analysis ....................................................................................................................................................... 6 Delta-V budget ................................................................................................................................................................. 6 Spacecraft trajectory ........................................................................................................................................................ 8 3.2 Systems operations modes .................................................................................................................................... 12 3.3 Space propulsion Subsystem ................................................................................................................................. 12 Chemical Vs. electrical propulsion .................................................................................................................................. 12 Refinement process of the electrical thruster ................................................................................................................. 15 3.4 Attitude, determination and control subsystem ................................................................................................... 18 Objectives of the ADCS ................................................................................................................................................... 18 Disturbance Torque Environment ................................................................................................................................... 18 Design Solution for the ACDS .......................................................................................................................................... 20 Sensor Selection .............................................................................................................................................................. 26 Control Algorithm ........................................................................................................................................................... 28 3.5 Communication Subsystem and Ground Segment ................................................................................................ 29 Summary of the main S/S constraints/ Assumptions ..................................................................................................... 29 Communications configuration selection ....................................................................................................................... 29 Ground Station selection ................................................................................................................................................ 31 Antenna Selection ........................................................................................................................................................... 31 Link Budget Calculation and trade-off ............................................................................................................................ 31 3.6 Electric Power subsystem ...................................................................................................................................... 33 Summary of the main S/S constraints ............................................................................................................................ 33 Selection of the EPS configuration .................................................................................................................................. 34 Summary of the selection ..............................................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages93 Page
-
File Size-