Passive Sampling for Monitoring of Inorganic Pollutants in Water

Passive Sampling for Monitoring of Inorganic Pollutants in Water

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Passive sampling for monitoring of inorganic pollutants in water JESPER KNUTSSON Department of Civil and Environmental Engineering CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2013 i Passive sampling for monitoring of inorganic pollutants in water Jesper Knutsson ISBN 978-91-7385-854-0 © JESPER KNUTSSON, 2013. Doktorsavhandlingar vid Chalmers tekniska högskola Ny serie nr 3535 ISSN 0346-718X Department of Civil and Environmental Engineering Division of Water Environment and Technology Chalmers University of Technology SE-412 96 Gothenburg, Sweden Telephone +46 31 772 1000 www.chalmers.se Cover: A schematic representation of a Chemcatcher® passive sampler with principal components named. Chalmers Reproservice Gothenburg, Sweden 2013 ii Passive sampling for monitoring of inorganic pollutants in water JESPER KNUTSSON Department of Civil and Environmental Engineering Chalmers University of Technology Abstract As new environmental management policies for watersheds are implemented, there has been a growing interest for new monitoring alternatives. Traditionally grab sampling has been the method of choice for monitoring purposes, but may not be adequate or economically viable, to meet the requirements of the new policies. Passive samplers for monitoring of aquatic pollutants have been described in the literature for almost three decades, but they are only beginning to gain acceptance outside the scientific research community. The potential advantages of passive samplers over other sampling and measurement strategies include the ability to integrate pollutant levels over extended sampling periods (up to several weeks), as well as inherent speciation capabilities, allowing for critical in situ speciation of metals. Passive samplers are relatively low-cost and do not require secure locations or additional infrastructure, making them ideal devices for certain monitoring tasks. The research presented in this thesis aims at further developing passive sampling for aquatic monitoring. This research includes field trials, the development of a novel application for nutrient monitoring in waste water treatment plant effluents and the identification of scenarios for which passive samplers can be used. An analysis of measurement uncertainties associated with passive samplers is also presented. Keywords: passive samplers, heavy metals, speciation, pollutant monitoring, natural water, urban run-off, waste water, WFD. iii iv List of appended papers The cover paper in this thesis is based on the following papers, referred to with roman numerals in the text: Paper I: Allan, I.J., et al., Strategic monitoring for the European Water Framework Directive. Trends in Analytical Chemistry, 2006. 25(7): p. 704. Paper II: Allan, I.J., et al., Evaluation of the Chemcatcher and DGT passive samplers for monitoring metals with highly fluctuating water concentrations. Journal of Environmental Monitoring, 2007. 9: p. 672- 681. Paper III: Allan, I.J., et al., Chemcatcher and DGT passive sampling devices for regulatory monitoring of trace metals in surface water. Journal of Environmental Monitoring, 2008. 10(7): p. 821-829. Paper IV: Vrana, B., et al., Passive sampling techniques for monitoring pollutants in water. TrAC, Trends in Analytical Chemistry, 2005. 24(10): p. 845-868. Paper V: Knutsson, J., et al. Evaluation of a passive sampler for the speciation of metals in urban runoff water. Submitted to Environmental Science: Processes & Impacts. Paper VI: Knutsson, J., S. Rauch, and G.M. Morrison, Performance of a passive sampler for the determination of time averaged concentrations of nitrate and phosphate in water. Environmental Science: Processes & Impacts, 2013. Paper VII: Knutsson, J., et al. Estimation of measurement uncertainties for passive samplers used in water quality monitoring. Submitted to Analytical chimica acta. v Other published work by the autor: Arpadjan, S. ; Tsekova, K. ; Petrova, P. et al. (2012). Field sampling, speciation and determination of dissolved iron (II) and iron (III) in waters. Bulgarian Chemical Communications. 44 (4) p. 299-306. Arpadjan, S. ; Petrova, P. ; Knutsson, J. (2011). Speciation analysis of thallium in water samples after separation/ preconcentration with the Empore TM chelating disk. International Journal of Environmental Analytical Chemistry. 91 (11) p. 1088-1099. Kalmykova, Y. ; Knutsson, J. ; Strömvall, A-M. (2009). Blast-Furnace Sludge as Sorbent Material for Multi-Metal Contaminated Water. S. Rauch, G.M Morrison and A.Monzon, Highway and Urban Environment, Madrid, Springer. p. 325-336. Mills, G. A.; Allan, I. J.; Guigues, N.; Knutsson, J.; Holmberg, A.; Greenwood, R. (2009). Monitoring heavy metals using passive samplers. Rapid chemical and biological techniques for water monitoring. p. 243-262. ISBN 978-0-470-05811-4 Arpadjan, S.; Petrova, P.;, Knutsson, J. (2008). Preconcentration Methods for Determination of Thallium in Natural Waters. Eurasian Journal of Analytical Chemistry, 3 (1) Rauch, S. ; Knutsson, J. (2007). The relative impact of automobile catalysts and Russian smelters on PGE deposition in Greenland. Highway and Urban Environment, Morrison G.M. and Rauch S. (Eds). p. 215- 222. vi Table of Contents 1 INTRODUCTION............................................................................................................................... 1 1.1 IN SITU TECHNIQUES .......................................................................................................................... 2 1.2 PASSIVE SAMPLERS ........................................................................................................................... 3 1.3 AIMS AND OBJECTIVES ...................................................................................................................... 4 2 PRINCIPLES OF THE PASSIVE SAMPLER ................................................................................ 5 2.1 KINETIC PASSIVE SAMPLING .............................................................................................................. 7 2.2 DIFFUSION LIMITING LAYER .............................................................................................................. 9 2.3 DIFFUSION BOUNDARY LAYER .......................................................................................................... 9 2.4 DGT MODEL EQUATION ...................................................................................................................10 2.5 CHEMCATCHER® MODEL EQUATION ................................................................................................12 2.6 CALIBRATING FOR ENVIRONMENTAL VARIABLES .............................................................................13 2.7 COMPARISON WITH TRADITIONAL SAMPLING ...................................................................................13 3 SPECIATION IN NATURAL FRESH WATERS ..........................................................................17 3.1 METAL SPECIATION ..........................................................................................................................18 3.1.1 Relative importance of natural ligands..................................................................................19 3.2 SPECIATION OF NITROGEN AND PHOSPHOROUS ................................................................................20 4 SPECIATION WITH PASSIVE SAMPLERS ................................................................................21 4.1 METALS ...........................................................................................................................................21 4.1.1 Weak complexes .....................................................................................................................23 4.1.2 Strong complexes ...................................................................................................................23 4.2 IMPORTANCE OF DIFFUSION COEFFICIENT ........................................................................................24 4.3 CONFIRMATION OF LABILITY THEORY ..............................................................................................25 4.4 IN SITU SPECIATION WITHOUT A PRIORI KNOWLEDGE ABOUT LIGANDS ............................................26 4.4.1 Variation in porosity ..............................................................................................................26 4.4.2 Different receiving phases .....................................................................................................27 4.4.3 Comparison with computer speciation codes ........................................................................28 4.5 RELEVANCE TO TOXICITY ASSESSMENT ...........................................................................................29 4.6 NITRATE AND PHOSPHATE ................................................................................................................30 5 EXPERIMENTAL .............................................................................................................................33 vii 5.1 EXPERIMENTAL PROCEDURE OF THE PASSIVE SAMPLERS .................................................................33 5.1.1 Chemcatcher® .......................................................................................................................33 5.1.2 DGT .......................................................................................................................................33 5.1.3 Procedural

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    78 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us