How Noncommutative Geometry Looks at Arithmetic

How Noncommutative Geometry Looks at Arithmetic

How Noncommutative Geometry looks at Arithmetic Matilde Marcolli 2007 Based on: Alain Connes, Caterina Consani, Matilde Marcolli, • Noncommutative geometry and motives: the ther- modynamics of endomotives, Advances in Mathe- matics, Vol.214 (2007) N.2, 761-831. Caterina Consani, Matilde Marcolli, Quantum sta- • tistical mechanics over function fields Journal of Number Theory 123 (2007) 487-528. Alain Connes, Matilde Marcolli, Niranjan Ramachan- • dran, KMS states and complex multiplication, Se- lecta Mathematica, Vol.11 (2005) N.3-4, 325{347. Alain Connes, Matilde Marcolli, Quantum statisti- • cal mechanics of Q-lattices in \Frontiers in num- ber theory, physics, and geometry. I", 269{347, Springer, Berlin, 2006. Alain Connes, Caterina Consani, Matilde Marcolli, • The Weil proof and the geometry of the adeles class space, to appear in Manin's Festschrift. 1 Some Goals: Moduli spaces in arithmetic geometry: Enrich the boundary structure with \invisible" degenerations: Modular curves • (elliptic curves and noncommutative tori) Shimura varieties • Moduli spaces of Drinfeld modules, etc. • L-functions: Modular forms and modular symbols • extensions on the boundary Spectral realization of L-functions • and cohomological interpretation L-functions of motives • (geometry of archimedean factors) L-functions for real quadratic fields • (Stark's numbers) 2 Noncommutative geometry as a tool Equivalence relation on X: R quotient Y = X= . R Even for very good X X= pathological! ) R Classical: functions on the quotient (Y ) := f (X) f is invariant A f 2 A j R − g often too few functions ) (Y ) = C only constants A NCG: (Y ) noncommutative algebra A (Y ) := (Γ ) A A R functions on the graph Γ X X of the equivalence relation R ⊂ × (compact support or rapid decay) Convolution product (f1 f2)(x; y) = f1(x; u)f2(u; y) ∗ x Xu y ∼ ∼ involution f ∗(x; y) = f(y; x). 3 (Γ ) noncommutative algebra Y = X= A ) R noncommutativeR space Recall: C0(X) X Gelfand{Naimark equiv of categories , abelian C∗-algebras, loc comp Hausdorff spaces Result of NCG: Y = X= noncommutative space with NC al- R gebra of functions (Y ) := (Γ ) is A A R as good as X to do geometry • (deRham forms, cohomology, vector bundles, con- nections, curvatures, integration, points and subva- rieties) but with new phenomena • (time evolution, thermodynamics, quantum phe- nomena) 4 An example: Q-lattices (from joint work with Alain Connes) Definition: (Λ; φ) Q-lattice in Rn lattice Λ Rn + labels of torsion points ⊂ φ : Qn=Zn QΛ=Λ −! group homomorphism (invertible Q-lat if isom) φ general case invertible case φ Commensurability (Λ ; φ ) (Λ ; φ ) 1 1 ∼ 2 2 iff QΛ1 = QΛ2 and φ1 = φ2 mod Λ1 + Λ2 Q-lattices / Commensurability NC space ) 5 More concretely: 1-dimension (Λ; φ) = (λ Z; λ ρ) λ > 0 ρ Hom(Q=Z; Q=Z) = lim Z=nZ = Z^ n 2 − Up to scaling λ: algebra C(Z^) Commensurability Action of N = Z>0 1 αn(f)(ρ) = f(n− ρ) (partially defined action of Q+∗ ) Invertible: A∗ =Q∗ = GL1(Q) (GL1(A ) 1 ) = Sh(GL1; 1) f + n f × { g simplest (zero-dim) example of Shimura variety Non-invertible: nc C0(A ) o Q∗ Sh (GL1; 1) f + , \non-commutative" Shimura variety 6 1-dimensional Q-lattices up to scale / Commens. NC space C(Z^) o N ) Crossed product algebra f f (r; ρ) = f (rs 1; sρ)f (s; ρ) 1 ∗ 2 1 − 2 s QX,sρ Z^ 2 +∗ 2 1 f ∗(r; ρ) = f(r− ; rρ) Representations: Rρ = r Q : rρ Z^ f 2 +∗ 2 g 1 (πρ(f)ξ)(r) = f(rs− ; sρ)ξ(s) sXRρ 2 2 on ` (Rρ). Completion: f = sup πρ(f) k k ρ k k Time evolution (ratio of covolumes of commensurable pairs) it covol(Λ0) (σt f)((Λ; φ); (Λ0; φ0)) = f((Λ; φ); (Λ0; φ0)) covol(Λ) it (σt f)(r; ρ) = r f(r; ρ) 7 Quantum statistical mechanics ( ; σ ) C -algebra and time evolution A t ∗ State: ' : C linear '(1) = 1, '(a a) 0 A ! ∗ ≥ Representation π : ( ): Hamiltonian A ! B H itH itH π(σt(a)) = e π(a)e− Symmetries: Automorphisms: G Aut( ), gσ = σ g • ⊂ A t t Inner: u = unitary, σ (u) = u, a uau t 7! ∗ Endomorphisms: ρσ = σ ρ, e = ρ(1) • t t it Inner: u = isometry σt(u) = λ u 8 KMS states ' KMS 2 β Im z = β iβ β ϕ σ F(t + i ) = ( t(b)a) ϕ σ 0 F(t) = (a t(b)) Im z = 0 a; b holom function F (z) on strip: 8 2 A 9 a;b Fa;b(t) = '(aσt(b)) Fa;b(t + iβ) = '(σt(b)a) t R 8 2 9 Example: Gibbs states inverse temperature 0 < β < 1 1 βH βH Tr a e− Z(β) = Tr e− Z(β) At T > 0 simplex KMSβ ; extremal β At T = 0 (ground states) weak limits E ' (a) = lim 'β(a) 1 β !1 Classical points of NC space Action of symmetries (mod inner): endomor- phisms 1 ρ∗(') = ' ρ, for '(e) = 0 '(e) ◦ 6 On warming up/cooling down E1 β H Tr(π'(a) e ) W (')(a) = − β β H Tr( e− ) 10 Main idea: Recover classical moduli spaces as set of low temperature KMS states. Extra structure: high temperature regime, phase transitions, algebra of quantum mechanical observables Bost{Connes: For (C(Z^) o N; σt) Classification of KMS states: β 1 unique KMS state • ≤ ) β β > 1 = Sh(GL1; 1) • ) Eβ 1 βH 'β,α(x) = Tr πα(x) e− ζ(β) = β = Galois action θ : Gal(Qcycl=Q) ∼ Z^ • 1 ! ∗ γ '(x) = '(θ(γ) x) 11 Generalizations: System GL1 GL2 K = Q(p d) − Z(β) ζ(β) ζ(β)ζ(β 1) ζK(β) − Symm AQ∗ ;f =Q∗ GL2(AQ;f )=Q∗ AK∗ ;f =K∗ Aut Z^ GL2(Z^) ^ = ∗ O∗ O∗ End GL+(Q) Cl( ) 2 O Gal Gal(Qab=Q) Aut(F ) Gal(Kab=K) Sh(GL1; 1) Sh(GL2; H) AK∗ =K∗ E1 ;f In 2-dimensions GL2 (Connes-Marcolli) Q(p d) (Connes-Marcolli-Ramachandran) − Shimura varieties (Ha-Paugam) Function fields (Consani-Marcolli) Function fields case K = Fq(C) requires char p valued functions; time evolution σ : Zp Aut( ) and Goss L-function ! A s Z(s) = I− s S = C∗ Zp 2 1 1 × XI 12 The function field case (Consani-M.) 2-dim Q-lattices pointed Tate module [CMR] , T E = H1(E; Z^); ξ ; ξ T E: 1 2 2 Commensurability isogeny , Function fields K = Fq(C): Elliptic curves/lattices Drinfeld modules ) 1-dim K-lattices mod commens. A =K LK;1 K;f ∗ (choice of v = on curve C) convolution algebra 1 ) K = completion at v = ; K¯ = algebraic closure; 1 1 1 C = completion; Goss L-function 1 s Z(s) = I− s S = C∗ Zp 1 XI 2 1 × Quantum statistical mechanics: p-adic time evolution σ : Zp Aut( ) ! A Partition function Z(s), KMS states A =K ) K∗ ∗ 12-1 General procedure: Endomotives (from joint work with Connes and Consani) Algebraic category of endomotives: Objects: = A o S AK A = lim Aα Xα = Spec(Aα) −!α Xα = Artin motives over K S = unital abelian semigroup of endomorphisms with ρ : A ' eAe with e = ρ(1) ! Morphisms: ´etale correspondences (Xα; S) (X0 ; S0) spaces Z such that the G − G α0 right action of (X0 ; S0) is ´etale. G α0 (i.e. Z = Spec(M) right K-module: M finite projective) A Q-linear space (( ) ( )) formal linear combi- M Xα; S ; Xα0 0 ; S0 nations U = i aiZi CompP osition: Z W = Z W ◦ ×G0 fibered product over groupoid of the action of S0 on X0 13 Analytic category of endomotives: X(K¯)=S Objects: C -algebras C( ) o S ∗ X C algebra = C(X(K¯)) o S = C ( ) ∗ − A ∗ G Uniform condition: µ = lim µα counting on Xα − dρ µ ∗ loc constant on = X(K¯) dµ X state ' on ) A Morphisms: ´etale correspondences Z g : discrete fiber and 1 =comp operator in Z ! X MZ right module over C ( ) from Cc( )-valued inn prod ∗ X G ξ; η (x; s) := ξ¯(z)η(z s) h i ◦ z Xg 1(x) 2 − For { spaces Z Z(K¯) = G G0 7! Z Cc( ) right mod over Cc( ) Z G Morphisms in KK or cyclic category ) 14 Galois action: G = Gal(K¯=K) on characters X(K¯) = Hom(A; K¯) χ χ g An K¯ An K¯ K¯ ! 7! ! ! automorphisms of = C( ) o S A X ^ Revisit the example: C(Z) =∼ C∗(Q=Z) (Fourier transform) Xn = Spec(An); An = Q[Z=nZ] A = lim An = Q[Q=Z] −!n S = N action on canonical basis er, r Q=Z 2 1 ρn(er) = es n nsX=r Galois action ζn = χ(e ) cyclotomic action of 1=n ) Gab = Gal(Qcycl=Q) Examples from self-maps of algebraic varieties 15 Data: (X; S) endomotive =K: C -algebra = C( ) o S • ∗ A X arithmetic subalgebra = A o S • AK state ' : C (from uniform µ) • A ! Galois action G Aut( ) • ⊂ A Enters Thermodynamics: ( ; ') σ with ' KMS (Tomita{Takesaki) A ) t 1 GNS ' with cyclic separating vector ξ H ξ and ξ dense in ' ( =von Neumann alg) M M0 H M S' : ξ ξ aξ S'(aξ) = a∗ξ M ! M 7! S∗ : 0ξ 0ξ a0ξ S∗(a0ξ) = a0∗ξ ' M ! M 7! ' 1=2 closable polar decomposition S' = J'∆ ) ' 1 J' conjugate-linear involution J' = J'∗ = J'− 1 ∆' = S'∗S' self-adjoint positive J'∆'J' = S'S'∗ = ∆'− it it J' J' = and ∆ ∆ = • M M0 'M '− M α (a) = ∆ita∆ it a t ' '− 2 M The state ' is a KMS1 state for the modular • ' automorphism group σt = α t − 16 Classical points: Ωβ ' if σ preserves K o C KMS1 state on t A ) A Ω regular extremal KMS states β ⊂ Eβ β (low temparature: type I , i.e.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    36 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us