Gravitational Wave Observations of Binary Black Hole Mergers Miami 2017

Gravitational Wave Observations of Binary Black Hole Mergers Miami 2017

Gravitational wave observations of binary black hole mergers Miami 2017 James A. Clark December 15, 2017 The story so far. In two observing runs (\O1", \O2") we have so observed: O1: GW150914, LVT1510121, GW151226 • O2: GW170104, GW170608, GW170814 • 1 \LVT": LIGO-Virgo transient, lower significance 1 / 21 Masses GW150914: spectacular discovery of unknown class of black hole, subsequent measurements probing black hole mass distribution ! 2 / 21 A New Population of Black Holes 3 / 21 Overview This talk: an introduction to gravitational wave (GW) observations of binary black hole (BBH) mergers 1 BBH Observations GW150914 GW151226 GW170104 GW170608 GW170814 2 Astrophysical Implications Progenitor Systems Image: butterfly1 4 / 21 BBH Observations GW150914 On September 14, 2015. first detection at > 5σ (FAR< 10−7 yr−1) SNR=24, (m1; m2) = (36; 29) M , D ∼ 410 Mpc [1] 5 / 21 Inferring Source Properties Binary parameter space: Component masses: m1, m2 • 2 3 = 6 spin components • × Binary orientation: θJN , φc, • Sky-location & distance: (α; δ)& • D 15-dimensional waveform model! Inspiral phase evolution accurately modeled via post-Newtonian theory: Leading-order amplitude and phase evolution: chirp mass [2]: • (m m )3=5 = 1 2 c 1=5 M (m1 + m2) Additional parameters (q = m2=m1 1), effective spin χeff enter at • ≤ higher PN-order Effective spin { most important combination of spins for evolution of • inspiral [3]: 6 / 21 c ~χ1 ~χ1 χeff = + L^ GM m1 m2 · Inferring Source Properties Source properties (generally) determined from Bayesian analysis of a given waveform model: Time series data output from detector, given a signal h(t), noise • n(t): d(t) = h(t) + n(t) Signal h(t) is a linear combination of polarizations, weighted by • antenna beam patterns F+;×: ~ ~ h(t) = F+(α; δ; )h+(t; θ) + F×(α; δ; )h×(t; θ) ~ Source properties θ = c ; q; χeff ; ; θJN ; φc;::: • fM D g Information about source properties θ~ is determined from posterior probability density function: p(θ~ d~) p(θ~) (d~ θ~) j ∼ L j Assumes signal model faithfully models the underlying signal! 7 / 21 GW150914: Masses ) Component mass distributions [4] Final mass & spin [4] • Fitting formula from numerical relativity (NR) for final mass, spin +4:5±0:8 +4:1±0:7 • Initial Mtot = 65:0−4:0±0:7 M , Final Mtot = 62:0−3:7±0:6 M 2 • Erad ∼ 3 M c : peak luminosity >> than entire electromagnetic (EM)-observable Universe! 8 / 21 GW150914: Cross-validation Two approaches to waveform reconstruction: 1. h(t) = h(t; c ; q; χeff ; ; θJN ; φc;::: ) M D 2. h(t) = wavelet decomposition dictated by coherent network signal Excellent agreement validation of BBH waveform models [4, 5] ! 9 / 21 GW151226 SNR=13, (m1; m2) = (14:2; 7:5) M , D ∼ 440 Mpc [6] 10 / 21 GW151226 Source Properties: spin configuration Figure 1: Component spin magnitudes & Mass-weighted spin χ and in-plane eff orientations spin-components χp [6] • Lower mass ! merger at higher frequency, longer inspiral • Longer inspiral ! more informative spin measurement • p(χeff > 0jD) > 99% ! at least 1 BH has non-zero spin 11 / 21 GW150914, LVT151012 & GW151226: durations & spins 12 / 21 GW170104 More distant cousin of GW150914: SNR=13, (m1; m2) = (31:2; 19:4) M , D ∼ 880 Mpc [7] Waveform reconstructions remain consistent p(χeff < 0jD) = 0:82 ! large total spin aligned with orbital angular momentum is disfavored 13 / 21 GW170608 Most recent result, lightest BBH so far! SNR=13, (m1; m2) = (12; 7) M , D ∼ 340 Mpc [8] Potential selection bias ! systems with uninformative precession (χp) Spin inferences for GW170608 [8] measurements 14 / 21 GW170814 First Virgo observation, first triple-detector detection! [9] Hanford Livingston Virgo 14 12 10 8 SNR 6 4 2 0 5.0 4.5 256 4.0 3.5 128 3.0 2.5 64 2.0 1.5 Frequency [Hz] 32 1.0 0.5 Normalized Amplitude 16 0.0 ] 1.0 -21 2 5 5 0.5 0.0 0 0 0 noise σ 0.5 − 5 5 − 2 − − Whitened Strain [10 1.0 − 0.46 0.48 0.50 0.52 0.54 0.56 0.46 0.48 0.50 0.52 0.54 0.56 0.46 0.48 0.50 0.52 0.54 0.56 Time [s] Time [s] Time [s] SNR=18, (m1; m2) = (30:5; 25:3) M , D ∼ 540 Mpc [9] 15 / 21 GW170814: Sky localization Triple-coincident observations sky localization ! • 1 GW detector: omni-directional but non-uniform • 2 GW detectors: time-delay constrains source to annulus + amplitude ratio constraints • 3 GW detectors: intersection of 2 annuli ! sky-patches Geometry of HLV network and signal travel times [10] • Initial HL rapid localization: 1160 deg2 • Rapid localization +Virgo: 100 deg2 2 Localization of GW170814 [9] • Full parameter estimation: 60 deg 16 / 21 Observation Summary: Sky localization 90% credible sky-areas GW150914: 230 deg2 [11] LVT151012: 1600 deg2 [11] GW151226: 850 deg2 [11] GW170104: 1200 deg2 [7] GW170814: 50 deg2 [9] 17 / 21 Astrophysical Implications Massive BH Progenitor Systems GW150914: m1; m2 > all • known BH masses BH formation: • 1. Supernova + fall-back 2. Failed SN + prompt collapse Key factor: stellar wind • metallicity Z: Figure 2: Dependence of maximum BH mass on Low Z ! lower opacity, metallicity [12] (Bands: GW150914 m1, m2) weaker winds & less mass-loss Conclusion: GW150914 BBH formed in a low-metallicity environment 18 / 21 Constraining Binary Evolution Scenarios BBH formation channels (see e.g., [11]): 1. dense stellar environment dynamical formation 3 ! 2. isolated binary evolution with a common envelope phase 3 3. chemically homogeneous evolution, tidally-locked binaries 7 Expect large, aligned spins: implausible in light of GW170104 Dynamical BBH formation [13] BBH through isolated evolution [14] 19 / 21 Summary GW BBH observations • becoming \routine" (!) GWs encode source parameters • Some parameters measured well (e.g., chirp mass) Others much harder (e.g., mass ratio, spin orientations) GW observations starting to • probe black hole formation & evolution Expected BBH detection rates from O1 [11] Just scraping the surface: • Whole suites of tests of general relativity! • Higher-order multipoles + precession in waveform models • Direct comparisons with numerical relativity • Searches for \intermediate" mass BBH (> 100 M ) 20 / 21 Observation Summary: Spins & Masses Watch this space! 21 / 21 O1 Source Parameters Figure 3: Trigger characteristics and source parameters for the O1 BBH triplet [11] GW170104 Figure 4: Trigger characteristics and source parameters for GW170104 [7] GW170608, GW170814 Figure 6: Trigger characteristics and source Figure 5: Trigger characteristics and source parameters for GW170814 [9] parameters for GW170608 [8] References [1] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], , \Observation of Gravitational Waves from a Binary Black Hole Merger", Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [2] B. S. Sathyaprakash & B. F. Schutz, \Physics, Astrophysics and Cosmology with Gravitational Waves", Living Rev. Relativ. (2009) [3] P. Ajith et al, \Inspiral-Merger-Ringdown Waveforms for Black-Hole Binaries with Nonprecessing Spins" Phys. Rev. Lett. 106, 241101 (2011) [4] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], , \Properties of the binary black hole merger GW150914", Phys. Rev. Lett. 116, 241102 (2016), arXiv:1602.03840 References [5] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], \Tests of general relativity with GW150914", Phys. Rev. Lett. 116, 221101 (2016), arXiv:1602.03841 [6] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], , \GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence", Phys. Rev. Lett. 16 241103 (2016) arXiv:1606.04855 [7] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], \GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2", Phys. Rev. Lett. 118, 221101 (2017) [8] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], \GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence", Submitted to Astrophys. J. Lett (2017), arxiv:1711.05578 References [9] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], \GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence", Phys. Rev. Lett. 119, 141101 (2017), arxiv:1709.09660 [10] S. Chatterji et al., \Coherent network analysis technique for discriminating gravitational-wave bursts from instrumental noise", Phys. Rev. D 74, 082005 (2006) [11] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], , \Binary Black Hole Mergers in the first Advanced LIGO Observing Run", Phys. Rev. X 6, 041015 (2016), arXiv:1606.04856 [12] B. P. Abbott et al. [Virgo and LIGO Scientific Collaborations], , \Astrophysical Implications of the Binary Black-Hole Merger GW150914", Astrophys. J. Lett., 818, L22, (2016), arXiv:1602.03846 References [13] C. Rodriguez, et al., \Dynamical Formattion of the GW150914 Binary Black Hole", Astrophys. J. Lett. 824 1 (2016) [14] K. Belczynski et al., \The first gravitational-wave source from the isolated evolution of two stars in the 40100 solar mass range", Nature 534, 512{515 (2016).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    31 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us