Linear Programming

Linear Programming

Linear Programming Lecture 1: Linear Algebra Review Lecture 1: Linear Algebra Review Linear Programming 1 / 24 1 Linear Algebra Review 2 Linear Algebra Review 3 Block Structured Matrices 4 Gaussian Elimination Matrices 5 Gauss-Jordan Elimination (Pivoting) Lecture 1: Linear Algebra Review Linear Programming 2 / 24 columns rows 2 3 a1• 6 a2• 7 = a a ::: a = 6 7 •1 •2 •n 6 . 7 4 . 5 am• 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 = aT aT ::: aT 6 . .. 7 6 . 7 1• 2• m• 4 . 5 4 . 5 T a1n a2n ::: amn a•n Matrices in Rm×n A 2 Rm×n 2 3 a11 a12 ::: a1n 6 a21 a22 ::: a2n 7 A = 6 7 6 . .. 7 4 . 5 am1 am2 ::: amn Lecture 1: Linear Algebra Review Linear Programming 3 / 24 rows 2 3 a1• 6 a2• 7 = 6 7 6 . 7 4 . 5 am• 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 = aT aT ::: aT 6 . .. 7 6 . 7 1• 2• m• 4 . 5 4 . 5 T a1n a2n ::: amn a•n Matrices in Rm×n A 2 Rm×n columns 2 3 a11 a12 ::: a1n 6 a21 a22 ::: a2n 7 A = 6 7 = a a ::: a 6 . .. 7 •1 •2 •n 4 . 5 am1 am2 ::: amn Lecture 1: Linear Algebra Review Linear Programming 3 / 24 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 = aT aT ::: aT 6 . .. 7 6 . 7 1• 2• m• 4 . 5 4 . 5 T a1n a2n ::: amn a•n Matrices in Rm×n A 2 Rm×n columns rows 2 3 2 3 a11 a12 ::: a1n a1• 6 a21 a22 ::: a2n 7 6 a2• 7 A = 6 7 = a a ::: a = 6 7 6 . .. 7 •1 •2 •n 6 . 7 4 . 5 4 . 5 am1 am2 ::: amn am• Lecture 1: Linear Algebra Review Linear Programming 3 / 24 2 T 3 a•1 T 6 a•2 7 = 6 7 = aT aT ::: aT 6 . 7 1• 2• m• 4 . 5 T a•n Matrices in Rm×n A 2 Rm×n columns rows 2 3 2 3 a11 a12 ::: a1n a1• 6 a21 a22 ::: a2n 7 6 a2• 7 A = 6 7 = a a ::: a = 6 7 6 . .. 7 •1 •2 •n 6 . 7 4 . 5 4 . 5 am1 am2 ::: amn am• 2 3 a11 a21 ::: am1 6 a12 a22 ::: am2 7 AT = 6 7 6 . .. 7 4 . 5 a1n a2n ::: amn Lecture 1: Linear Algebra Review Linear Programming 3 / 24 T T T = a1• a2• ::: am• Matrices in Rm×n A 2 Rm×n columns rows 2 3 2 3 a11 a12 ::: a1n a1• 6 a21 a22 ::: a2n 7 6 a2• 7 A = 6 7 = a a ::: a = 6 7 6 . .. 7 •1 •2 •n 6 . 7 4 . 5 4 . 5 am1 am2 ::: amn am• 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 6 . .. 7 6 . 7 4 . 5 4 . 5 T a1n a2n ::: amn a•n Lecture 1: Linear Algebra Review Linear Programming 3 / 24 Matrices in Rm×n A 2 Rm×n columns rows 2 3 2 3 a11 a12 ::: a1n a1• 6 a21 a22 ::: a2n 7 6 a2• 7 A = 6 7 = a a ::: a = 6 7 6 . .. 7 •1 •2 •n 6 . 7 4 . 5 4 . 5 am1 am2 ::: amn am• 2 3 2 T 3 a11 a21 ::: am1 a•1 T 6 a12 a22 ::: am2 7 6 a•2 7 AT = 6 7 = 6 7 = aT aT ::: aT 6 . .. 7 6 . 7 1• 2• m• 4 . 5 4 . 5 T a1n a2n ::: amn a•n Lecture 1: Linear Algebra Review Linear Programming 3 / 24 2 a11 3 2 a12 3 2 a1n 3 6 a21 7 6 a22 7 6 a2n 7 = x 6 7+ x 6 7+ ··· + x 6 7 1 6 . 7 2 6 . 7 n 6 . 7 4 . 5 4 . 5 4 . 5 am1 am2 amn = x1 a•1 + x2 a•2 + ··· + xn a•n A linear combination of the columns. Matrix Vector Multiplication A column space view of matrix vector multiplication. 2 a11 a12 ::: a1n 3 2 x1 3 6 a21 a22 ::: a2n 7 6 x2 7 6 7 6 7 6 . .. 7 6 . 7 4 . 5 4 . 5 am1 am2 ::: amn xn Lecture 1: Linear Algebra Review Linear Programming 4 / 24 2 a12 3 2 a1n 3 6 a22 7 6 a2n 7 + x 6 7+ ··· + x 6 7 2 6 . 7 n 6 . 7 4 . 5 4 . 5 am2 amn = x1 a•1 + x2 a•2 + ··· + xn a•n A linear combination of the columns. Matrix Vector Multiplication A column space view of matrix vector multiplication. 2 a11 a12 ::: a1n 3 2 x1 3 2 a11 3 6 a21 a22 ::: a2n 7 6 x2 7 6 a21 7 6 7 6 7 = x 6 7 6 . .. 7 6 . 7 1 6 . 7 4 . 5 4 . 5 4 . 5 am1 am2 ::: amn xn am1 Lecture 1: Linear Algebra Review Linear Programming 4 / 24 2 a1n 3 6 a2n 7 + ··· + x 6 7 n 6 . 7 4 . 5 amn = x1 a•1 + x2 a•2 + ··· + xn a•n A linear combination of the columns. Matrix Vector Multiplication A column space view of matrix vector multiplication. 2 a11 a12 ::: a1n 3 2 x1 3 2 a11 3 2 a12 3 6 a21 a22 ::: a2n 7 6 x2 7 6 a21 7 6 a22 7 6 7 6 7 = x 6 7+ x 6 7 6 . .. 7 6 . 7 1 6 . 7 2 6 . 7 4 . 5 4 . 5 4 . 5 4 . 5 am1 am2 ::: amn xn am1 am2 Lecture 1: Linear Algebra Review Linear Programming 4 / 24 = x1 a•1 + x2 a•2 + ··· + xn a•n A linear combination of the columns. Matrix Vector Multiplication A column space view of matrix vector multiplication. 2 a11 a12 ::: a1n 3 2 x1 3 2 a11 3 2 a12 3 2 a1n 3 6 a21 a22 ::: a2n 7 6 x2 7 6 a21 7 6 a22 7 6 a2n 7 6 7 6 7 = x 6 7+ x 6 7+ ··· + x 6 7 6 . .. 7 6 . 7 1 6 . 7 2 6 . 7 n 6 . 7 4 . 5 4 . 5 4 . 5 4 . 5 4 . 5 am1 am2 ::: amn xn am1 am2 amn Lecture 1: Linear Algebra Review Linear Programming 4 / 24 A linear combination of the columns. Matrix Vector Multiplication A column space view of matrix vector multiplication. 2 a11 a12 ::: a1n 3 2 x1 3 2 a11 3 2 a12 3 2 a1n 3 6 a21 a22 ::: a2n 7 6 x2 7 6 a21 7 6 a22 7 6 a2n 7 6 7 6 7 = x 6 7+ x 6 7+ ··· + x 6 7 6 . .. 7 6 . 7 1 6 . 7 2 6 . 7 n 6 . 7 4 . 5 4 . 5 4 . 5 4 . 5 4 . 5 am1 am2 ::: amn xn am1 am2 amn = x1 a•1 + x2 a•2 + ··· + xn a•n Lecture 1: Linear Algebra Review Linear Programming 4 / 24 Matrix Vector Multiplication A column space view of matrix vector multiplication. 2 a11 a12 ::: a1n 3 2 x1 3 2 a11 3 2 a12 3 2 a1n 3 6 a21 a22 ::: a2n 7 6 x2 7 6 a21 7 6 a22 7 6 a2n 7 6 7 6 7 = x 6 7+ x 6 7+ ··· + x 6 7 6 . .. 7 6 . 7 1 6 . 7 2 6 . 7 n 6 . 7 4 . 5 4 . 5 4 . 5 4 . 5 4 . 5 am1 am2 ::: amn xn am1 am2 amn = x1 a•1 + x2 a•2 + ··· + xn a•n A linear combination of the columns. Lecture 1: Linear Algebra Review Linear Programming 4 / 24 Range of A m n Ran (A) = fy 2 R j 9 x 2 R such that y = Ax g Ran (A) = the linear span of the columns of A The Range of a Matrix Let A 2 Rm×n (an m × n matrix having real entries). Lecture 1: Linear Algebra Review Linear Programming 5 / 24 Ran (A) = the linear span of the columns of A The Range of a Matrix Let A 2 Rm×n (an m × n matrix having real entries). Range of A m n Ran (A) = fy 2 R j 9 x 2 R such that y = Ax g Lecture 1: Linear Algebra Review Linear Programming 5 / 24 The Range of a Matrix Let A 2 Rm×n (an m × n matrix having real entries). Range of A m n Ran (A) = fy 2 R j 9 x 2 R such that y = Ax g Ran (A) = the linear span of the columns of A Lecture 1: Linear Algebra Review Linear Programming 5 / 24 The linear span of v1;:::; vk : Span [v1;:::; vk ] = fy j y = ξ1v1 + ξ2v2 + ··· + ξk vk ; ξ1; : : : ; ξk 2 Rg The subspace orthogonal to v1;:::; vk : ? n fv1;:::; vk g = fz 2 R j z • vi = 0; i = 1;:::; k g ? ? Facts: fv1;:::; vk g = Span [v1;:::; vk ] ? h ?i Span [v1;:::; vk ] = Span [v1;:::; vk ] Two Special Subspaces n Let v1;:::; vk 2 R . Lecture 1: Linear Algebra Review Linear Programming 6 / 24 The subspace orthogonal to v1;:::; vk : ? n fv1;:::; vk g = fz 2 R j z • vi = 0; i = 1;:::; k g ? ? Facts: fv1;:::; vk g = Span [v1;:::; vk ] ? h ?i Span [v1;:::; vk ] = Span [v1;:::; vk ] Two Special Subspaces n Let v1;:::; vk 2 R .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    117 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us