Design and Analysis of Supply-Noise-Insensitive All-Digital Phase

Design and Analysis of Supply-Noise-Insensitive All-Digital Phase

DESIGN AND ANALYSIS OF SUPPLY-NOISE-INSENSITIVE ALL-DIGITAL PHASE-LOCKED LOOPS Chen Yuan B. Eng., Xidian University, China, 2012 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF APPLIED SCIENCE in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Electrical and Computer Engineering) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2018 © Chen Yuan, 2018 Abstract Phase-locked loops (PLLs) are widely used in communication and digital systems to generate high frequency clocks by multiplying a low-frequency reference clock. Scaling of complementary metal-oxide-semiconductor (CMOS) technology over the last decade has benefitted digital circuits by shrinking their size and reducing their power consumption. On the other hand, it has posed challenges for analog design because of the decreasing power supply voltage and output impedance of transistors. Therefore, an all-digital PLL (ADPLL) becomes increasingly preferable over its conventional analog counterparts in terms of area and design flexibility. PLLs employ an oscillator locked to the phase and frequency of the reference clock. An LC oscillator utilizes an inductor (L) to filter noise, but on-chip inductors require large area and need specific thick metal layers for low loss. Compared to LC oscillators, ring oscillators are more suitable for ADPLL implementation since they occupy smaller area and are compatible to digital CMOS processes without a thick-metal layer option. However, the oscillation frequency of a ring oscillator is determined by the propagation delay of the delay-cells, and thereby very susceptible to power supply noise. In fully-integrated systems, switching of large-scale digital circuits can create large supply ripples and degrade the noise performance of the PLL output. Low dropout (LDO) regulators as well as some cancellation techniques have been adopted in prior-art to mitigate the supply sensitivity of ring-oscillator based ADPLLs. However, these techniques suffer from supply voltage headroom, noise penalty, and design complexity. In this thesis, a low-complexity supply-noise-insensitive ADPLL is proposed that does not degrade the supply voltage headroom, and operates over a wide range of supply-noise amplitude. Fabricated in a 65nm CMOS process, the ADPLL achieves ~ 45 mV of tunable supply-noise- ii insensitive range where the frequency pushing is less than 10%, operating at 850 mV supply. With the tuning range from 1 GHz to 1.4 GHz, the ADPLL achieves 16 ps integrated jitter at 1.25 GHz output frequency and consumes 2.73 mW of power. iii Lay Summary CMOS process scaling poses challenges for analog design, while benefits digital design. Therefore, an all-digital phase-locked loop with an area-efficient ring oscillator is preferable to implement in a fully-integrated digital system to provide clocking signal. However, ring oscillators are inherently sensitive to supply noise, of which performance can be degraded by supply ripples existing in large-scale digital systems. Therefore, supply-noise sensitivity suppression or cancellation techniques should be adopted in ring-oscillator all-digital phase-locked loops. Existing techniques suffer from supply voltage headroom, noise penalty, and design complexity. In this thesis, a low-complexity supply-noise-insensitive ADPLL is proposed, which maintains supply-noise insensitivity over a wide-range supply-noise magnitude without degradation of supply voltage headroom. iv Preface This Thesis is an original intellectual product of the author Chen Yuan. All the work presented henceforth was conducted in the System-on-Chip (SoC) Laboratory at the University of British Columbia, Point Grey campus. v Table of Contents Abstract .......................................................................................................................................... ii Lay Summary ............................................................................................................................... iv Preface .............................................................................................................................................v Table of Contents ......................................................................................................................... vi List of Tables .............................................................................................................................. viii List of Figures ............................................................................................................................... ix List of Abbreviations .................................................................................................................. xii Acknowledgements .................................................................................................................... xiv Chapter 1: Introduction ................................................................................................................1 1.1 Analog Phase-Locked Loop ............................................................................................ 3 1.2 All-Digital Phase-Locked Loop ...................................................................................... 5 1.3 Research Objective ......................................................................................................... 7 1.4 Thesis Outline ................................................................................................................. 7 Chapter 2: Background .................................................................................................................9 2.1 Phase Noise and Jitter ..................................................................................................... 9 2.2 LC and Ring Oscillators................................................................................................ 10 2.3 Supply-Noise Sensitivity of Ring-Based ADPLLs ....................................................... 13 2.4 Prior Art ........................................................................................................................ 16 2.4.1 Supply-Noise Suppression/Regulation ..................................................................... 16 2.4.2 Supply-Noise Cancellation ....................................................................................... 18 Chapter 3: Proposed Supply-Noise-Insensitive DCO ...............................................................21 vi 3.1 Evolution of the Oscillator Core ................................................................................... 21 3.2 Capacitor Bank with Bridging Capacitor ...................................................................... 28 3.3 Digitally Controlled Resistor Bank ............................................................................... 30 Chapter 4: Supply-Noise-Insensitive ADPLL ...........................................................................31 4.1 Bang-Bang Phase Detector ........................................................................................... 31 4.2 Proportional-Integral Based Digital Loop Filter ........................................................... 32 4.3 Multi-Modulus Divider ................................................................................................. 32 Chapter 5: Measurement Results ...............................................................................................34 5.1 Measurement Setup ....................................................................................................... 34 5.2 PCB Design ................................................................................................................... 35 5.3 DCO Measurement ....................................................................................................... 36 Chapter 6: Conclusion .................................................................................................................47 Bibliography .................................................................................................................................48 vii List of Tables Table 2-1 Comparison of supply-noise mitigating techniques in ring oscillators ........................ 20 Table 5-1 DCO phase noise (PN) with clean VDD ...................................................................... 37 Table 5-2 PN measurements under different supply noise conditions ......................................... 43 Table 5-3 ADPLL performance summary .................................................................................... 45 Table 5-4 Comparison to prior-art ring-based ADPLLs ............................................................... 46 viii List of Figures Figure 1-1 Block diagram of QUALCOMM snapdragon 835 [1]. ................................................. 1 Figure 1-2 A typical wireline transceiver. ...................................................................................... 2 Figure 1-3 Block diagram of a wireless transceiver. ...................................................................... 3 Figure 1-4 A CP-based analog phase-locked loop. ......................................................................... 4 Figure 1-5 Timing sequence diagram for a locked PLL. ................................................................ 4 Figure 1-6 A conventional all-digital PLL block diagram.............................................................. 5 Figure 1-7 A standard digital design flow. ....................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    66 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us