Diffraction Pattern −50 −2 0 2 −100 −50 0 50 100 X, Position in Grating F, Position in Diffraction Pattern

Diffraction Pattern −50 −2 0 2 −100 −50 0 50 100 X, Position in Grating F, Position in Diffraction Pattern

Chapter 8 Optics for Engineers Charles A. DiMarzio Northeastern University Sept. 2012 Diffraction Collimated Beam: Divergence in Far Field Focused Beam: Minimum Spot Size and Location λ α = C D Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{1 Slit Experiments −5 1 −5 1 0.5 0.5 0 0 0 0 −0.5 −0.5 5 −1 5 −1 −5 0 5 −5 0 5 A. Two slits B. Aperture • Angular Divergence of Light Waves • Alternating Bright and Dark Regions • Near{ and Far{Field Behavior λ = 800nm. Axis Units are µm Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{2 Diffraction and Maxwell's Equations • • Red Contour Faraday's Equation Z @B E · ds =6 0 H =6 0 r × E = − y @t { Propagation alongz ^ • Green Contour, Ey = Ez = 0 Z E · ds = 0 Hz = 0 0.5 0 x • Blue, Ex Constant, Ey = 0 −0.5 Z −1.5 −1 4 E · ds = 0 Hz = 0 −0.5 3 2 0 • 1 Blue{Dash Contour (Edge) 0.5 0 Z z y 1 −1 E · ds =6 0 Hz =6 0 E = Exe^ jkz { Propagation Alongy ^ too Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{3 Diffraction and Quantum Mechanics 10 10 p = hk=(2π) m 5 m 5 µ µ kx = jkj sin α 0 0 ≥ −5 −5 δx δpx h x, Transverse Distance, x, Transverse Distance, Gaussian Beam, d = 12 µ m, λ = 1 µ m. Gaussian Beam, d = 6 µ m, λ = 1 µ m. 0 0 −10 −10 0 10 20 30 40 50 0 10 20 30 40 50 ≥ z, Axial Distance, µ m z, Axial Distance, µ m δx δkx 2π 10 10 δx k sin δα ≥ 2π m 5 m 5 µ µ 2π 0 0 sin δα ≥ δx jkj −5 −5 x, Transverse Distance, x, Transverse Distance, Gaussian Beam, d = 3 µ m, λ = 1 µ m. Gaussian Beam, d = 1.5 µ m, λ = 1 µ m. 0 0 λ −10 −10 0 10 20 30 40 50 0 10 20 30 40 50 sin δα ≥ z, Axial Distance, µ m z, Axial Distance, µ m δx Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{4 A Peek at Gaussian Beams • The Correct Quantum Approach { Position Probability Density Function, P (x) { Momentum Probability Density Function, P (k) = FT (P (x)) { Uncertainty Measurement D E D E 2 2 2 2 2 2 (δx) = x − hxi (δpx) = px − hpxi ; • Gaussian Beam (Minimum Uncertainty Wave) λ sin δα = δx • Otherwise λ sin δα > δx Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{5 Fresnel–Kirchoff Integral (1) • Expand RHS r · (V rE) − r · (ErV ) = r r r2 − • Auxiliary Field ( V )( E) + V E ej(!t+kr) (rE)(rV ) − Er2V = 0 V (x; y; z; t) = r • E & V Satisfy Helmholz • Electric Field 2 2 ! j!t r E = E E (x; y; z; t) = Es (x; y; z) e c2 • Green's Theorem !2 ZZ r2 = V 2 V (V rE − ErV ) · nd^ 2A = c A+A0 ZZZ r · (V rE) − r · (Erv) d3V RHS = 0 = LHS A+A0 Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{6 Fresnel–Kirchoff Integral (2) • From Prev. Page ZZ (V rE − ErV ) · nd^ 2A = 0 A+A0 • Split Surface ZZ (V rE − ErV ) · nd^ 2A+ A ZZ 2 (V rE − ErV ) · nd^ A0 = 0 A0 • Radius of A0 ! 0 ZZ (V rE − ErV ) · nd^ 2A = 4πE (x; y; z) A0 • Helmholtz–Kirchoff Integral Theorem ZZ " ! # 1 ejkr ejkr E (x; y; z) = − E r · n^ − (rE) · n^ d2A 4π A r r Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{7 Fresnel–Kirchoff Integral (3) ZZ " ! # 1 ejkr ejkr E (x; y; z) = − E r · n^ − (rE) · n^ d2A 4π A r r • E0 Slowly Varying ( ) E (rE) · n^ = jkE − n^ · r^0 r0 0 • Irregular Surface of A ! 1 • r >> λ, r >> λ 0 0 e−jkr rE ! 0 1=r2 ! 0 1=(r )2 ! 0 E = E0 r0 ZZ jkr ( ) jk e 0 E (x1; y1; z1) = E (x; y; z) n^ · r^− n^ · r^ dA 4π Aperture r Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{8 Obliquity Factor • Fresnel–Kirchoff Integral Theorem (Previous Page) ZZ jkr ( ) jk e 0 E (x1; y1; z1) = E (x; y; z) n^ · r^− n^ · r^ dA 4π Aperture r • Numerical Calculations Possible Here, or Simpify More • Obliquity Factor (Removes Backward Wave) • For Small Transverse Distances . ( ) 0 n^ · r^− n^ · r^ = 2 Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{9 Paraxial Approximation ZZ jk ejkr E (x1; y1; z1) = E (x; y; z) dA 2π Aperture r q 2 2 2 r = (x − x1) + (y − y1) + z1 • Paraxial Approximation for • Taylor's Series (First Order) [ ] 2 2 (x − x1) (y − y1) r ≈ z 1 + + • in Denominator 1 2 2 r 2z1 2z1 ≈ r z 2 2 (x − x1) (y − y1) • r in Exponent r ≈ z1+ + s 2z1 2z1 ( )2 ( )2 x − x1 y − y1 • Easier Closed{Form r = z1 + + 1 z1 z1 Computation • Amenable to Further (x − x1) << z1 (y − y1) << z1 Approximations Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{10 Error in Paraxial Approximation q 2 2 2 2 2 (x − x1) (y − y1) r = (x − x1) + (y − y1) + z1 r ≈ z1+ + 2z1 2z1 1 10 0 10 −1 10 dr/dx −2 10 Paraxial True −3 Difference 10 0 10 20 30 40 50 60 70 80 90 Angle, Degrees Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{11 Pupil Coordinates • Pupil Position Coordinates (Length Units) x1; y1 • Angular Coordinates (Di- mensionless) u = sin θ cos ζ v = sin θ sin ζ • Spatial Frequency q Approximation 2 2 max u + v = NA x1 sin θ cos ζ fx ≈ = • Spatial Frequency (Inverse rλ λ Length) y1 sin θ sin ζ fy ≈ = d(kr) 2π dr rλ λ 2πfx = = dx λ dx • For Fourier Optics (Ch. 11) Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{12 Coordinate Relationships Spatial Pupil Direction Frequency Location Cosines Spatial Frequency x1 = λzfx u = fxλ y1 = λzfy v = fyλ x1 x1 Pupil Location fx = λz u = z y1 y1 fy = λz v = z u Direction cosines fx = λ x1 = uz v fy = λ y1 = vz Angle u = sin θ cos ζ v = sin θ sin ζ Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{13 Two Approaches • Fresnel Diffraction ZZ − 2 − 2 jkz1 (x x1) (y y1) jke jk 2z + 2z E (x1; y1; z1) = E (x; y; 0) e 1 1 dxdy 2πz1 • Fraunhofer Diffraction (x, x1 both small) ( ) ( ) 2 2 2 2 2 2 (x − x1) + (y − y1) = x + y + x1 + y1 − 2 (xx1 + yy1) ZZ x2+y2 2 2 jkz1 ( ) (x +y ) (xx1+yy1) jke jk 1 1 jk −jk E (x1; y1; z1) = e 2z1 E (x; y; 0) e 2z1 e z1 dxdy 2πz1 Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{14 Fresnel Radius and the Far Field • Curvature Terms (x2+y2) (x2+y2) jk jk 1 1 e 2z1 e 2z1 • Fresnel Radius in Integrand (See Plot on Next Page) ( )2 ( )2 2 2 (x +y ) j2π p r j2π r q jk 2z 2λz1 rf e 1 = e = e rf = 2λz1 • Simplified Integral x2+y2 jkz1 ( 1 1) jke jk 2z E (x1; y1; z1) = e 1 × 2πz1 x2+y2 ZZ j2π (xx +yy ) r2 −jk 1 1 E (x; y; 0) e f e z1 dxdy Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{15 Integrand in Fresnel Zones ( )2 r j2π r • Fresnel e f Phase Increases With r2 Number Real: Blue Solid Line, Imag: Red Broken Line rmax 1 Nf = rf 0.8 { Near Field 0.6 ≈ 0 0.4 Nf 0.2 { Far Field 0 Nf 0 −0.2 Curvature Term { Almost{ −0.4 Far Field −0.6 N 0 −0.8 f • −1 Different 0 0.5 1 1.5 2 2.5 3 3.5 4 Radius in Fresnel Zones Approximations Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{16 Far Field: Fraunhofer Zone q p 2 z1 D /λ (Far{Field Condition) rf = 2z1λ 2D (x2+y2) j2π rf Nf = r=rf 1 (Fraunhofer Zone) e ≈ 1 Fraunhofer Diffraction Fresnel–Kirchoff Integral is a Fourier Transform x2+y2 ZZ jkz1 ( 1 1) − (xx1+yy1) jke jk 2z jk z E (x1; y1; z1) = e 1 E (x; y; 0) e 1 dxdy 2πz1 Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{17 Near Field: Fresnel Zone 2 z1 D /λ (Near{Field Condition) Nf = r=rf 1 • Fresnel Diffraction ZZ − 2 − 2 jkz1 (x x1) (y y1) jke jk 2z + 2z E (x1; y1; z1) = E (x; y; 0) e 1 1 dxdy 2πz1 • Integrand Averages to Zero Except near x1 = x, y1 = y Sept. 2012 c C. DiMarzio (Based on Optics for Engineers, CRC Press) slides8{18 Almost{Far field • Condition Nf small but not that small • Fraunhofer Diffraction ZZ x2+y2 2 2 jkz1 ( ) (x +y ) (xx1+yy1) jke jk 1 1 jk −jk E (x1; y1; z1) = e 2z1 E (x; y; 0) e 2z1 e z1 dxdy 2πz1 • Looks Like Fourier Transform with Curvature • Computation Feasible if Nf is Not Too Large (Watch for Nyquist Criterion in Sampling E(x; y; 0)) Sept.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    65 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us