Digital Health Care 0418

Digital Health Care 0418

RESEARCH SURVEY Digital Health Care Big data, clinical decision-making, health information systems, machine learning, predic- tion, mobile diagnostic tools, implantable, ingestible, wireless devices, sensors... Digital Health Care: Clinical Decision-Making, Machine Learning, Mobile Diagnostic Tools, Ingestible, Wearable Devices, etc. This survey by MIT’s Industrial Liaison Program identifies selected research and expertise in digital health care related to clinical decision-making, data, machine learning, mobile diagnostic tools, and implantable/ingestible and wearable devices, etc. For more information, please contact MIT’s Industrial Liaison Program at +1-617-253-2691. BIG DATA, CLINICAL DECISION-MAKING, HEALTH INFORMATION SYSTEMS, MACHINE LEARNING, PREDICTION ............................................................................................................................... 6 REGINA BARZILAY ............................................................................................................................................. 6 Learning to Cure ............................................................................................................................................ 6 High-risk breast lesions: A machine learning model to predict pathologic upgrade and reduce unnecessary surgical excision............................................................................................................................................. 6 Using artificial intelligence to improve early breast cancer detection ............................................................................. 7 Machine learning to parse breast pathology reports in Chinese....................................................................... 8 Using machine learning to parse breast pathology reports .............................................................................. 8 DIMITRIS J BERTSIMAS ....................................................................................................................................... 9 Algorithmic Approaches to Personalized Health Care ..................................................................................... 9 Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening.......................................................................................................................................................10 Accept or Decline? An Analytics-Based Decision Tool for Kidney Offer Evaluation .......................................10 Personalized diabetes management using electronic medical records .............................................................11 Transforming decision making with analytics .................................................................................................11 POLINA GOLLAND..............................................................................................................................................11 Cardiac MRI analysis ....................................................................................................................................12 Clinical Neuroimaging ..................................................................................................................................12 Monitoring Fetal Health ................................................................................................................................12 Fast geodesic regression for population-based image analysis .......................................................................12 Population based image imputation ...............................................................................................................13 New technique makes brain scans better ...................................................................................................................... 13 Video: Making Invisible Obvious: Computational Analysis of Medical Images ...............................................14 Temporal Registration in In-Utero Volumetric MRI Time Series .....................................................................14 MRIs for fetal health................................................................................................................................................... 14 JOHN V. GUTTAG ...............................................................................................................................................15 Data-Driven Inference Group ........................................................................................................................15 Hidden Influencers, Risk and Causes of Infection ........................................................................................................ 15 Predicting Adverse Events Across Changing Electronic Health Record Systems ........................................................... 16 Video: Transforming Healthcare Using Machine Learning ............................................................................16 Predicting clinical outcomes across changing electronic health record systems ..............................................16 Using machine learning to improve patient care ........................................................................................................... 17 THOMAS HELDT.................................................................................................................................................17 Computational Physiology and Clinical Inference Group (CPCI) ...................................................................18 Integrating Data, Models, and Reasoning in Critical Care ............................................................................................ 18 MIT Industrial Liaison Program April 2018 | Page 2 Model-Based Estimation of Respiratory Parameters from Capnography, with Application to Diagnosing Obstructive Lung Disease ..............................................................................................................................19 Prediction of postoperative outcomes using intraoperative hemodynamic monitoring data .............................19 MIT Professional Education Course: Quantitative Cardiorespiratory Physiology and Clinical Applications For Engineers (June 2018) ............................................................................................................................20 UNA-MAY O'REILLY .........................................................................................................................................20 Anyscale Learning for All (ALFA) Group .......................................................................................................21 GIGABEATS: Data science for medical sensor data .................................................................................................... 21 BeatDB v3: A Framework for the Creation of Predictive Datasets from Physiological Signals ........................21 Analysis of locality-sensitive hashing for fast critical event prediction on physiological time series.................22 ROSALIND W. PICARD ........................................................................................................................................22 Affective Computing Research Group ............................................................................................................23 Machine Learning for Pain Measurement .................................................................................................................... 23 Behavioral Indications of Depression Severity ............................................................................................................. 23 Automated Tongue Analysis ....................................................................................................................................... 23 Personalized Multitask Learning for Predicting Tomorrow's Mood, Stress, and Health ..................................23 Personalized Automatic Estimation of Self-Reported Pain Intensity from Facial Expressions ..........................24 Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors ......................24 Wrist sensor reveals sympathetic hyperactivity and hypoventilation before probable SUDEP .........................25 BrightBeat: Effortlessly influencing breathing for cultivating calmness and focus ...........................................25 DAVID SONTAG .................................................................................................................................................25 Clinical Machine Learning Group .................................................................................................................26 Precision Medicine ..................................................................................................................................................... 26 Intelligent Electronic Health Records .......................................................................................................................... 26 Learning a Health Knowledge Graph from Electronic Medical Records .........................................................27 Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning ...........................................................................................................................................27

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    64 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us