Linear Classification Scalar Products

Linear Classification Scalar Products

LINEAR CLASSIFICATION SCALAR PRODUCTS Definition For two vectors x and y in Rd, the scalar product of x and y is d x, y := x y + ... + x y = x y h i 1 1 d d i i Xi=1 Note: x, x = x 2, so the Euclidean norm (= the length) of x is x = x, x . h i k k k k h i Linearity p The scalar product is additive in both arguments, x + z, y = x, y + z, y and x, y + z = x, y + x, z h i h i h i h i h i h i and scales as c x, y = c x, y = x, c y for any c R . h · i · h i h · i ∈ Functions that are additive and scale-equivariant are called linear, so the scalar product is linear in both arguments. Peter Orbanz Applied Data Mining 37 · THE COSINE RULE x x y − θ Recall: The cosine rule 0 y If two vectors x and y enclose an angle θ, then x y 2 = x 2 + y 2 2 cos θ x y k − k k k k k − k kk k (If θ is a right angle, then cos θ = 0, and this becomes Pythogoras’ x y 2 = x 2 + y 2.) k − k k k k k Cosine rule for scalar products It is easy to check that x 2 + y 2 x y 2 = 2 x, y k k k k − k − k h i Substituting gives 2 cos θ x y = 2 x, y k kk k h i and hence x, y cos θ = h i x y k kk k Peter Orbanz Applied Data Mining 38 · REPESENTING A HYPERPLANE Consequences of the cosine rule The scalar product satisfies x, y = x y if and only if x and y are parallel, and h i k kk k x, y = 0 if and only if x and y are orthogonal. h i x2 H Hyperplanes A hyperplane in Rd is a linear subspace of dimension (d 1). − 2 • A hyperplane in R is a line. 3 • A hyperplane in R is a plane. x1 • A hyperplane always contains the origin, since it is a linear subspace. Peter Orbanz Applied Data Mining 39 · HYPERPLANES x2 Hyperplanes H d • Consider a hyperplane H in R . Think of H as a set of points. d • Each point x in H is a vector x R . vH ∈ • Now draw a vector vH that is orthogonal to H. Then any vector x Rd is a point in H if and only x1 • ∈ if x is orthogonal to vH. • Hence: x H x, vH = 0 . ∈ ⇔ h i If we choose vH to have length vH = 1, then vH • k k is called a normal vector of H. d H = x R x, vH = 0 . { ∈ | h i } Peter Orbanz Applied Data Mining 40 · WHICH SIDE OF THE PLANE ARE WE ON? H x Distance from the plane vH The projection of x onto the direction of vH has length θ • x, vH measured in units of vH, i.e. length cos θ x h i x, vH / vH in the units of the coordinates. · k k h i k k • By cosine rule: The distance of x from the plane is x, vH d(x, H) = h i = cos θ x . vH · k k k k Which side of the plane? The cosine satisfies cos θ > 0 iff θ ( π , π ). • ∈ − 2 2 • We can decide which side of the plane x is on using sgn(cos θ) = sgn x, vH . h i Peter Orbanz Applied Data Mining 41 · SHIFTING HYPERPLANES x 2 H Affine Hyperplanes • An affine hyperplane Hw is a hyperplane shifted by a vector w, Hw = H + w . (That means w is added to each point x in H.) vH x1 • We choose w in the direction of vH, so w = c vH for some c > 0 . · c vH · k k Which side of the plane are we on? • Which side of Hw a point x is on is determined by 2 sgn( x w, vH ) = sgn( x, vH c vH, vH ) = sgn( x, vH c vH ) . h − i h i − h i h i − k k • If vH is a unit vector, we can use sgn( x w, vH ) = sgn( x, vH c) . h − i h i − Peter Orbanz Applied Data Mining 42 · CLASSIFICATION WITH AFFINE HYPERPLANES c v k Hk vH sgn( vH, x c) > 0 h i − H sgn( vH, x c) < 0 h i − Peter Orbanz Applied Data Mining 43 · LINEAR CLASSIFIERS Definition A linear classifier is a function of the form fH(x) := sgn( x, vH c) , h i − d where vH R is a vector and c R+. ∈ ∈ Note: • We usually assume vH to be a unit vector. If it is not, fH still defines a linear classifier, but c describes a shift of a different length. d • Specifying a linear classifier in R requires d + 1 scalar parameters. Definition Two sets A, B Rd are called linearly separable if there is an affine hyperplane H which separates them,∈ i.e. which satisfies < 0 if x A x, vH c = ∈ h i − > 0 if x B ( ∈ Peter Orbanz Applied Data Mining 44 · Elements of Statistical Learning (2nd Ed.) c Hastie, Tibshirani & Friedman 2009 Chap 2 ! LINEAR SEPARABILITY Bayes Optimal Classifier .............................................o ............ ............ ............................................o ............. ............ ............................................o o o ......................... ............. ............ ........................................................ ............. ............................................o o o o ............ ............. ............................................o o o ............ ............. .......................................................................................o o o ......................... ............. ...........................................o o o ............. ............. ...........................................o o o o ............. ............. ...........................................o o o o o ............. ............. ...........................................o o oo............. ............. ...........................................o o ............. ............. ............................................o o o o o ............ ............. ............................................o o oo ooo ............o ............. ............................................o oo o ............ ............. ............................................o o o o............oo .............o .............................................o o o oo o o ........... ............. .............................................o oo oo ...........o o .............o ..............................................oooo o ...........o ............o ...........................................................................o oo .... .............ooo ...........o ............o .............................o o o .... ..............o o o ..........oo ............o ............................o o ooo......o .............o oo ...........o ........... .....................................................o ................oo ............. ............o o ...........o ........... ......................................................................o ............o o o ............o o .......... .................................................o o............o..........o o ............. ............ ...........o .......... ....................................o o .......................o o ............. ............ .........o ........................................................................o oo oo ...........oo ...........................oo ......... ........ .........................................................o.................o ..........o oo .............. ........ ...........................................................................o o ......... .......o o ................. ...............o ........ ....... ..............................................................................o ooo o o ......o .. .................... ..................o ....... ..............................................................................................................................o o o ...... ...............................................................................................................................o oo ........... ................................................................................................................................o o ..... ..................................................................................................................................o o o o .... ....................................................................................................................................o o o o o ... .......................................................................................................................................o o ... .......................................................................................................................................... .....................................................................o o oo o o .....................................................................o .....................................................................ooo .....................................................................oo o .....................................................................o o o .....................................................................o .....................................................................o .....................................................................oo ..................................................................... .....................................................................o o ..................................................................... ..................................................................... .....................................................................o FIGURE 2.5. The optimal Bayes decision boundary linearly separable for the simulationnot example linearly of separable Figures 2.1, 2.2 and 2.3. Since the generating density is known for each class, this boundary can be calculated exactly (Exercise 2.2). Peter Orbanz Applied Data Mining 45 · LINEAR SEPARABILITY d • Recall that when data is represented by points in R , each axis represents a quantity that is measured (a “variable”). • If there exists a single variable that distinguishes two classes, these classes can be distinguished along a single axis. x2 x1 t • In this illustration, we could classify by a “threshold point” t on the line. Peter Orbanz Applied Data Mining 46 · LINEAR SEPARABILITY • Even if classes cannot be distinguished by a single variable, they may be distinguishable by a combination of several variables. • That is the case for linearly separable data. The threshold point along x1 is now a function of the threshold point along x2, and vice versa. Linearly separable also implies this function is linear. x2 x2 x1 x1 separable by a single measurement not separable by a single measurement but linearly separable Peter Orbanz Applied Data Mining 47 · .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    13 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us