Quadric Surfaces Review

Quadric Surfaces Review

12.6 Quadric surfaces Review: rv point on the line, direction abc, , Vector equation of a line L: r r0 t v 0 Parametric scalar equation of a line L: x x0 at, y y 0 bt, z z 0 ct r(t ) P0 t ( P 1 P 0 ) with 0 t 1 is the line which goes from P 0 to P 1 r0 on the plane Vector equation of a plane: n r r0 0 n abc, , normal to plane Scalar equation of the plane: ax by cz d nn12 Angle between two planes with normal nn12, : cos nn12 | (Qrn ) | Distance between a point Q and a plane: 0 n | (Qrv ) | Distance between a point Q and a line: 0 | v | Surfaces in 3-space: x2 y 2 z 2 Ellipsoid 1 a2 b 2 c 2 Hyperboloid of one sheet x2 y 2 k 2 x2 y 2 z 2 z k: 1 any k a2 b 2 c 2 2 2 2 1 abc horizontal traces are ellipses Hyperboloid of two sheet x2 y 2 k 2 z k: 2 2 2 1, | k | 1 x2 y 2 z 2 a b c 1 horizontal traces are ellipses a222 b c xy22 (Elliptical paraboloid) z ab22 Horizontal traces are ellipses (notice z 0) xy22 (Hyperbolic paraboloid) z ab22 Horizontal traces are hyperbolas Vertical traces are parabolas xy22 Cone z2 ab22 Horizontal traces are ellipses Vertical traces are hyperbolas y Notice: If x 0 z straight lines b Cylinders: xy22 yx22 y ax2 1 1 ab22 ab22 VII IV II III VI I VIII V Draw a picture of the following surfaces: x y22 z 22or a) x2 y 3 z 6 3 2 elliptic paraboloid opens in the positive x direction yz22 b) 4 x y22 4 z 0 or x 41 hyperbolic paraboloid Draw a picture of the surface : 4x2 y 2 4 z 2 4 y 24 z 36 0 4x2 y 2 4 y ___ 4 z 2 6 z ___9 36 ___4 ___36 4x2 y 222 4 z 3 4 22 x2 yz23 1 1 4 1 ellipsoid center: 0,2,3 notice e.g. y 0 Summary: x2 y2 z 2 1 Ellipsoid a2 b2 c2 x2 y 2 z 2 1 Hyperboloid of one sheet abc2 2 2 all variables present x2 y 2 z 2 1 Hyperboloid of two sheets a222 b c all variables squared z2 x 2 y 2 Cone elliptic c2 a 2 b 2 z x22 y Paraboloid elliptic c a22 b z x22 y one variable Paraboloid hyperbolic 22 c a b not squared one variable not present cylinder opening in the direction of the missing variable 22 22 xy xz 2 1 Elliptic cylinder 1 Hyperbolic cylinder z ax Parabolic cylinder ab22 ab22 13.1 Curves in Space A curve in space (or the plane): x f( t ), y g( t ), z h( t ) or in the plane: r(),,t f g h f i g j h k r()()()t f t j g t j This is a vector valued function (as opposed to scalar valued) Example: r(tt ) cos( ),sin(t), t Notice that x( t )22 y ( t ) 1 i.e. the curve lies on a cylinder A circular helix: A curve in the plane: r(tt ) 4cos(2 ) i 9sin(2 t) j xy22 Notice that 1 The particle travels along an ellipse 4922 r(0) 4 i = (4,0) Travels counter clockwise as 0t 2 the particle goes twice around the ellipse Trefoil knot: 3t 3 t 3 t rt 2 cos 2 cos t , 2 cos 2 sin t ,sin 2 For an animation go to : http://math.bu.edu/people/paul/225/trefoil_knot.html For a vector valued function: rt f t,, g t h t Take limits, derivatives and integrals component wise: limrt lim f t ,lim g t ,lim h t t a t a t a t a rt f t,, g t h t b b b b rtdt ftdt , gtdt , htdt a a a a sint Example: Let rrt , e2t ,ln 1 t . Find lim t t t0 sin t limr te lim ,0 ,ln 1 1,1,0 ij tt00t Examples: (a) Let rt sin12 t , 1 t ,ln 1 3 t . Find rt 1/2 1 1 2 1 13t rt , 12 tt , 3 ,, 1t 2 2 13 t 11tt2213 t 2 2 2 2 (b) t2i t t 1 j t sin t k dt tdttt2 , 1 dtt , sin tdt 1 1 1 1 2 3 2 t 81 7 t2 dt 33 3 1 3 1 2 1 1 1 3/2 1/2 225/2 3/2 u1 udu u u dt uu t t1 dt 53 0 0 0 1 ut1 du dt 22 6 10 16 tu10 53 15 15 15 tu21 2 tsin t dt ut dv sin t 1 1 udv uv vdu du dt vt cos 2 t 2 1 cost cos t dt 1 1 2 t 1 2 1 1 1 costt sin cos 2 22 sin 2 cos sin 2 1 21 3 1 0 1 0 2 7 16 3 t2i t t 1 j t sin t k dt , , 1 3 15 Differentiation Rules: Integration rules: d 1. ut v t u t v t (u(t ) v (t)) dt u ( t ) dt v ( t ) dt dt d 2. cuu t c t cuu()() t dt c t dt dt d 3. f tu t f t u t f t u t dt d 4. ut v t u t v t u t v t dt d 5. ut v t u t v t u t v t dt d 6. uu f t f t f t dt Geometry of the derivative vector : z secant vector P rrt h t Q r t rth y Tangent vector x tangent vector P rrt h t rt lim Q rrt h t r t h0 h h rth The tangent line to a smooth curve at tt 0 rt ftgtht ,, ft i gt j ht k It passes through the point r(t0 ) f t 0 , g t 0 , h t 0 , and has the same direction as the tangent vector at t0 r '(t0 ) f t 0 , g t 0 , h t 0 . So the equation of the tangent line is: s r(t00) s r '( t ) Or in parametric form: x f( t0 ) sf '( t 0 ), y g ( t 0 ) sg '( t 0 ), z h ( t 0 ) sh '( t 0 ) Problem : A drunken bee travels along the path r(tt ) cos(2 ),sin(2 t), t for 10 seconds. It then travels at constant speed in a straight line for 10 more seconds. At what point does the bee end up? Question: What is speed and velocity? Velocity is a vector: v(t ) r'(t) Speed is a scalar: | v(t ) | velocity: v(tt ) 2sin(2 ),2cos(2 t),1 Speed = | v(t ) | 9 3 At time t0 10, it travels along the tangent line with speed 3 ft/sec tangent line: s r(t00) s v ( t ) after 10 more seconds, it arrives at r(tt00) 10 v ( ) cos(20),sin(20),10 10 2sin(20),2cos(20),1 cos(20) 20sin(20),sin(20) 20cos(20),20 17.85, 9.07, 20 Question: What is distance traveled?.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    20 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us