Metabolic Engineering and Systems Biology for Increasing Biofuel Production in Microalgae

Metabolic Engineering and Systems Biology for Increasing Biofuel Production in Microalgae

METABOLIC ENGINEERING AND SYSTEMS BIOLOGY FOR INCREASING BIOFUEL PRODUCTION IN MICROALGAE by Robert Edward Jinkerson Copyright by Robert E. Jinkerson 2013 Some Rights Reserved This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License http://creativecommons.org/licenses/by-nc-sa/4.0/ A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Applied Chemistry). Golden, Colorado Date ___________ Signed: _______________________ Robert Jinkerson Signed: _______________________ Dr. Matthew C. Posewitz Thesis Advisor Golden, Colorado Date ___________ Signed: _______________________ Dr. David T. Wu Professer and Head Department of Chemistry and Geochemistry ii ABSTRACT The saccharification of starch coupled with fermentation to ethanol and the transesterification of vegetable oils to produce biodiesel are mature technologies that currently provide the majority of biofuels in the United States. However, traditional food-based starch and oil feedstocks, such as corn and soybean, cannot meet our current fuel demands and their use remains controversial. Microalgae have been of recent interest for use as a biofuel feedstock because they can produce large quantities of carbohydrates and lipids, contain little recalcitrant biomass, and do not impact the food supply. In the green alga Chlamydomonas reinhardtii, the primary carbohydrate produced is starch and the primary storage lipid produced is triacylglyceride (TAG), but high yields of these bioenergy carriers are usually only found under conditions of nutrient stress (N, S, P). As a strategy for increasing TAG yields, starchless mutants that divert carbon away from starch biosynthesis and into TAG production were investigated. These starchless mutants produce more TAG than wildtype, but at the expense of total productivity and lower overall anabolic activity. To increase starch levels, a native enzyme key to starch biosynthesis, isoamylase 1 (ISA1), was introduced into these algae which resulted in starch excess phenotypes. These mutant strains accumulate 3 to 4 fold more total glucan under nutrient-replete conditions by diverting metabolic flux into starch biosynthesis at the expense of cell division and protein synthesis. The starches produced by these algae are more crystalline and larger in size than wildtype. None of the current genetically-tractable model algal species are competitive TAG production strains. To alleviate this the commercially cultivated, oleaginous alga Nannochloropsis gaditana CCMP526 was developed into a new model algal species for investigating TAG production. The genome and transcriptome was sequence and assembled, gene models developed, and metabolic pathways in this organism were reconstructed. Phylogenomic analysis identified genetic attributes of this organism, including gene expansions and unique stramenopile photosynthesis genes, that may explain the distinguishing oleaginous phenotypes observed. The availability of a genome sequence and transformation method are facilitating investigations into N. gaditana lipid biosynthesis and will permit genetic engineering strategies to further improve this naturally productive algal strain. iii TABLE OF CONTENTS ABSTRACT ................................................................................................................................................ iii LIST OF FIGURES ..................................................................................................................................... ix LIST OF TABLES ....................................................................................................................................... xi LIST OF ABBREVIATIONS ..................................................................................................................... xii ACKNOWLEDGMENTS .......................................................................................................................... xv DEDICATION ........................................................................................................................................... xvi CHAPTER 1 Introduction ............................................................................................................................. 1 1.1 Biofuels overview...................................................................................................................... 1 1.2 Microalgae as a biofuel feedstock ............................................................................................. 4 1.3 Algal carbohydrates ................................................................................................................... 7 1.3.1 Polyglucan storage and starch biosynthesis in algae ......................................................... 8 1.3.2 Starch degradation in algae ............................................................................................... 9 1.3.3 Genetic modification strategies for increasing glucan storage ........................................ 11 1.3.4 Genetic modification strategies for decreasing starch degradation in microalgae .......... 11 1.3.5 Secretion strategies and soluble sugars ........................................................................... 12 1.3.6 Alcohol production in algae ............................................................................................ 13 1.4 Algal lipids .............................................................................................................................. 13 1.4.1 Fatty acids ....................................................................................................................... 14 1.4.2 Altering algal fatty acid biosynthesis for biofuel production .......................................... 14 1.4.3 Terpenes and terpenoids .................................................................................................. 16 1.4.4 Botryococcus hydrocarbons ............................................................................................ 16 1.5 The focus of this work ............................................................................................................. 18 1.5.1 Carbon partitioning in green algae between starch and lipids ........................................ 18 1.5.2 Role of isoamylase in starch biosynthesis and in starch excess phenotype .................... 19 1.5.3 How systems biology can used to increase biofuel production in algal systems ............ 20 1.5.4 Development of a new model organism for algal lipid production, Nannochloropsis gaditana ................................................................................................................................... 21 1.6 General summary .................................................................................................................... 23 CHAPTER 2 Increased Lipid Accumulation in the Chlamydomonas reinhardtii sta7-10 Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in Complemented Strains ......... 24 2.1 Introduction ............................................................................................................................. 24 2.2 Material and methods .............................................................................................................. 25 2.2.1 Chlorophyll measurements. ............................................................................................ 26 iv 2.2.2 Microscopy ..................................................................................................................... 26 2.2.3 Starch assays ................................................................................................................... 27 2.2.4 FAME Quantification ..................................................................................................... 27 2.2.5 Acetate utilization ........................................................................................................... 28 2.2.6 Photosynthetic oxygen evolution rates ............................................................................ 28 2.2.7 Chlorophyll Fluorescence Measurements ....................................................................... 28 2.3 Results ..................................................................................................................................... 29 2.4 Discussion ............................................................................................................................... 39 2.5 Conclusion ............................................................................................................................... 43 CHAPTER 3 Isoamylase 1: single gene starch trigger in green algae ........................................................ 44 3.1 Introduction ............................................................................................................................. 44 3.2 Methods and Materials ............................................................................................................ 44 3.2.1 Strains, culturing conditions, growth assessments .......................................................... 45 3.2.2 ISA1 Transformation ....................................................................................................... 45 3.2.3 Starch quantification ......................................................................................................

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    255 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us