Molecular Design of Polymerized Ionic Liquids by Gabriel Eduardo Sanoja A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Rachel A. Segalman, co-Chair Professor Nitash P. Balsara, co-Chair Professor Susan J. Muller Professor Niren Murthy Fall 2016 Molecular Design of Polymerized Ionic Liquids © 2016 by Gabriel Eduardo Sanoja Abstract Molecular Design of Polymerized Ionic Liquids by Gabriel Eduardo Sanoja Doctor of Philosophy in Chemical Engineering University of California, Berkeley Professor Rachel A. Segalman, Co-Chair Professor Nitash P. Balsara, Co-Chair Polymerized ionic liquids are an emerging class of functional materials with ionic liquid moieties covalently attached to a polymer backbone. As such, they synergistically combine the structural hierarchy of polymers with the versatile physicochemical properties of ionic liquids. Unlike other ion-containing polymers that are typically constrained to high glass transition temperatures, polymerized ionic liquids can exhibit low glass transition temperatures due to weak electrostatic interactions even at high charge fractions. Promising applications relevant to electrochemical energy conversion and CO2 capture and sequestration have been demonstrated for polymerized ionic liquids, but a molecular design strategy that allows for elucidation of their structure-property relationships is yet to be developed. A combination of anionic polymerization, click chemistry, and ion metathesis allows for fine and independent control over polymer properties including the number of repeat units, fraction of ionic liquid moieties, composition, and architecture. This strategy has been exploited to elucidate the effect of lamellar domain spacing on the ionic conductivity of block copolymers based on hydrated protic polymerized ionic liquids. The conductivity relationship demonstrated in this study suggests that a mechanically robust material can be designed without compromising its ability to transport ions. The vast set of ion pair combinations in polymerized liquids provides a unique opportunity to develop functional materials where properties can be controlled with subtle changes in molecular structure via ion metathesis. We illustrate the case of a polymerized ionic liquid that combines the low toxicity and macromolecular dimensions of poly(ethylene glycol) with the magnetic functionality of ion pairs containing iron(III). This material can yield novel theranostic agents with controlled residence time within the human body, and paramagnetic functionality to enhance 1H nuclei relaxation rate required for medical imaging. Finally, the molecular design strategy is expanded to incorporate ion pairs based on metal-ligand coordination bonds between cations and imidazole moieties tethered to the polymer backbone. This illustrates a general approach for using chelating polymers with appropriate metal-ligand interactions to design high conductivity and tunable modulus polymer electrolytes 1 To my father, For always being the inspiration that I need and not the one I always deserve i Table of Contents Table of Contents ....................................................................................................................... ii Table of Tables ......................................................................................................................... iii Table of Figures ........................................................................................................................ iii Acknowledgements ................................................................................................................... vi Chapter 1. Introduction ...........................................................................................................1 1.1. Historical Background ...........................................................................................1 1.2. Polymerized Ionic Liquids for Electrochemical Devices.........................................4 1.3. Polymerized Ionic Liquids as Functional Materials ................................................5 1.4. Motivation and Thesis Outline ...............................................................................6 1.5. References .............................................................................................................7 Chapter 2. Structure-Conductivity Relationships of Block Copolymer Membranes based on Hydrated Protic Polymerized Ionic Liquids: Effect of Domain Spacing ..................................... 11 2.1. Introduction ......................................................................................................... 11 2.2. Experimental Methods ......................................................................................... 13 2.3. Results and Discussion ......................................................................................... 15 2.4. Conclusions ......................................................................................................... 25 2.5. Acknowledgements .............................................................................................. 25 2.6. Appendix. 1H NMR, 13C NMR, GPC, conductivity data, and other information ... 25 2.7. References ........................................................................................................... 45 Chapter 3. Magnetic and Biocompatible Polymers as 1H Nuclei Relaxation Agents for Magnetic Resonance Imaging.................................................................................................... 50 3.1. Introduction ......................................................................................................... 50 3.2. Experimental Methods ......................................................................................... 51 3.3. Results and Discussion ......................................................................................... 54 3.4. Conclusions ......................................................................................................... 60 ii 3.5. Acknowledgements .............................................................................................. 61 3.6. Appendix. 1H NMR, GPC, and Inversion Recovery Data ..................................... 61 3.7. References ........................................................................................................... 70 Chapter 4. Multivalent Ion Transport in Polymers via Metal-Ligand Coordination ................ 73 4.1. Introduction ......................................................................................................... 73 4.2. Experimental Methods ......................................................................................... 74 4.3. Results and Discussion ......................................................................................... 76 4.4. Conclusions ......................................................................................................... 82 4.5. Acknowledgements .............................................................................................. 84 4.6. Appendix. 1H NMR, GPC, and DSC data ............................................................. 84 4.7. References ........................................................................................................... 91 Chapter 5. Conclusions and Outlook ..................................................................................... 95 5.1. References ........................................................................................................... 96 Table of Tables Table 2.1. Properties of Block Copolymers Based on Protic Polymerized Ionic Liquids ............ 16 - Table 4.1. Properties of Mixtures of PEO-stat-PHGE with Multivalent NTf2 Salts ................... 79 Table A 2.1. Properties of PS-b-PB as determined from 1H NMR ............................................. 31 Table A 2.2. Properties of PS-b-PH as determined from 1H NMR ............................................. 39 Table A 2.3. Calculation of Volume Fractions of Block Copolymers Based on Protic PILs ....... 41 Table A 2.4. Calculation of Lamellar Domain Spacing of Block Copolymers Based on Protic PILs .......................................................................................................................................... 42 Table A 2.5. Calculation of the Ionic Conductivity of Block Copolymers based on Protic PILs . 43 Table A 2.6. Calculation of Water Uptake of Block Copolymers Based on Protic PILs ............. 44 Table of Figures Figure 1.1. Chemical Structures of Representative Cations and Anions used in Ionic Liquids ......2 Figure 2.1. Synthesis of Block Copolymers Based on Protic Polymerized Ionic Liquids ............ 17 Figure 2.2. SAXS Intensity Profiles of PS-b-PIL ....................................................................... 19 Figure 2.3. Variation of Lamellar Domain Spacing for PS-b-PIL ............................................... 20 Figure 2.4. WAXS Intensity Profiles for PS-b-PIL .................................................................... 22 iii Figure 2.5. Water Uptake and Ionic Conductivity of PS-b-PIL .................................................. 23 Figure 3.1. Synthesis of Magnetic and Biocompatible Polymer ................................................. 55 Figure 3.2. Toxicity of PEG-stat-PIL
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages105 Page
-
File Size-