Classical Normal Mode Analysis: Harmonic Approximation Each Absorption in a Vibrational Spectrum Corresponds to a Normal Mode

Classical Normal Mode Analysis: Harmonic Approximation Each Absorption in a Vibrational Spectrum Corresponds to a Normal Mode

Classical Normal Mode Analysis: Harmonic Approximation Each absorption in a vibrational spectrum corresponds to a normal mode. Characteristics of Normal Modes 1. Each normal mode acts like a simple harmonic oscillator. 2. A normal mode is a concerted motion of many atoms. 3. The Center of mass doesn’t move. 4. All atoms pass through their equilibrium positions at the same time. 5. Normal modes are independent; they don’t interact. Carbon Dioxide in Air 40 38 36 34 32 30 28 26 24 Bend: 22 -1 H2O 1595 cm Single Beam 20 18 16 Asymmetric stretch: -1 14 H2O 3756 cm 12 10 Symmetric stretch: Asymmetric stretch: -1 Bend: 8 H O 3652 cm -1 2 CO 2 2349 cm CO 667 cm -1 6 2 4000 3500 3000 2500 2000 1500 1000 500 Wavenumbers (cm-1) 1 dV d2 V V = k x 2 F = - = -kx k = (1) 2 dx dx 2 d2 x F = ma m = -kx (2) dt 2 d2 x x = A sin(2 πνt) = -4π2ν2 x -4π2ν2 m x = -kx (3) dt 2 Coordinates: Atom i: X i, Y i, Z i, Displacements: x i = Xi – Xi,eq , yi = Y i – Yi,eq Calculate the potential energy V(x 1, y 1, z 1, x 2, y 2, z 2, x 3, y 3, z 3,…., x N, y N, z N) ∂2V 11 2 = k 1 2 ∂ x1 xx change of the force on atom 1 in the x-direction when you move atom 1 in the x-direction Colby College ∂2 V 11 1 2 2 = k same atom same direction ∂ y1 yy ∂2V 11 1 2 ∂ ∂ = k same atom different directions x1 y1 xy ∂2V 12 = k different atom same direction 1 2 ∂x1∂x2 xx ∂2V 12 ∂ ∂ = kxy different atom and direction 1 2 x1 y2 change of the force on atom 1 in the x-direction when you move atom 2 in the y-direction π2ν2 11 11 11 12 12 1N -4 m1x1= -kxx x1 - kxy y1 - kxz z1 - kxxx2 - kxy y2 -…- kxz zN (4) π2ν2 11 11 11 12 12 1N -4 m1y1= -kyx x1 - kyy y1 - kyz z1 - kyx x2 - kyy y2 -…- kyz zN : π2ν2 21 21 21 22 22 2N -4 m2x2= -kxx x1 - kxy y1 - kxz z1 - kxx x2 - kxy y2 -…- kxz zN : N1 N1 N1 N2 N2 NN -4π2ν2 m z = -k x - k y - k z - k x - k y -…- k z N N zx 1 zy 1 zx 1 zx 2 zy 2 zz N Total of 3Nx3N terms on the right. For example: triatomic, only allow vibration along x-axis: O1 C2 O3 x π2ν2 11 12 13 -4 m1x1= -kxx x1 - kxx x2 - kxx x3 (5) 21 22 23 -4π2ν2 m x = -k x - k x -k x (6) 2 2 xx 1 xx 2 xx 3 31 32 33 -4π2ν2 m x = -k x - k x - k x (7) 3 3 xx 1 xx 2 xx 3 Use simultaneous equation solver, or….. Convert to mass weighted coordinates and mass weighted force constants: 12 k ~ ~ ~12 xx x1 = m1 x1 x2 = m2 x2 k = (8) xx m1 m2 Colby College then in the new coordinates: ~11 ~12 ~13 π2ν2 ~ ~ ~ ~ -4 x1 = - kxx x1 - kxx x2 - kxx x3 (9) ~21 ~22 ~23 π2ν2 ~ ~ ~ ~ -4 x2 = - kxx x1 - kxx x2 - kxx x3 (10) ~31 ~32 ~33 π2ν2 ~ ~ ~ ~ -4 x3 = - kxx x1 - kxx x2 - kxx x3 (11) 11 12 13 k k k 2 2 xx xx xx -4π ν m1 x1 = - m1 x1 - m2 x2 - m3 x3 (12) m1 m1 m1 m2 m1 m3 Mass weighted force constants and mass weighted displacements: 11 12 13 kxx kxx kxx m1 m1 m1 m2 m1 m3 ~ ~ x1 x1 21 22 23 k k k ~ 2 2 ~ xx xx xx = 4π ν (13) - x2 - x2 m2 m1 m2 m2 m2 m3 ~ ~ 31 32 33 x3 x3 kxx kxx kxx m3 m1 m3 m2 m3 m3 gives a symmetric matrix. This is an eigenvalue-eigenvector equation. The eigenvalues are the squared normal mode frequencies. The eigenvectors are the mass weighted normal coordinate displacements: ~ ~ ~ xi yi zi xi = sin(2 πνt) yi = sin(2 πνt) zi = sin(2 πνt) mi mi mi 1 k k Units: ν = or 4 π2ν2 = with k in N m -1, µ in kg molecule -1 2π m m ~ν 1 ν c ν~ To convert to wavenumbers: = λ or = λ = c with ν~ in cm -1, c in cm s -1, and m in g mol -1 : π2 2~ν2 4 c k ~2 k/m = or ν = -5 1000 g/kg N A m 5.8921x10 Carbon Dioxide Stretches: Sym 1340 cm -1 Asym 2349 cm -1 Colby College 11 33 12 23 By symmetry : k = k k = k xx xx xx xx 11 Guesses: k =1600 N m -1 xx 12 11 22 11 -1 13 kxx = -kxx kxx = 2 k xx = 3200 N m kxx = 0 O1 C2 O3 1600 1600 - 0 16 16 16 12 O1 -100 115.47 0 1600 3200 1600 C - - = 115.47 -266.67 115.47 2 - 12 16 12 12 12 16 0 115.47 -100 O 1600 1600 3 0 - 16 12 16 16 ≈ Eigenvector 1: E=0.00175039 0 ------------- Eigenvector 2: E= -100 Symmetric stretch: -0.707107 ~ 100 –1 ν = -5 = 1303 cm 0 5.892x10 0.707107 ------------- Eigenvector 3: E= -366.662 Asymmetric stretch: -0.369279 ~ 366.66 –1 ν = -5 = 2495 cm 0.852799 5.892x10 -0.369279 (for about 5% errors) Valence Force Field For m1 = m 3 q = r – r 1 12 o m q2= r23 – ro r12 2 r23 δ = θ – θo m1 m3 1 2 1 2 2 θ V = k q + k q + k δ δ 2 1 1 2 1 2 θ 2 2 2m 1 2 o k1 4π νasym = 1 + sin (14) m2 2 m1 θ θ 2 2 2 2m 1 2 o k1 2 2m 1 2 o kδ 4π (νsym + νbnd ) = 1 + cos + 1 + sin 2 (15) m2 2 m1 m1 m2 2 ro 4 2 2 2m 1 k1 kδ 16 π (νsym νbnd ) = 2 1 + 2 2 (16) m2 m1 ro G. Herzberg, “Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules,” Van Nostrand, Princeton, N. J., 1945. Colby College .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    4 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us