Advanced Solid State Physics.Pdf

Advanced Solid State Physics.Pdf

Contents 1 Introduction 5 2 Scales and Complexity 11 2.1 Time scales . 12 2.2 L: Length scales . 12 2.3 N: particle number . 13 2.4 C: Complexity and diversity. 13 3 Quantum Fields: Overview 17 4 Collective Quantum Fields 27 4.1 Harmonic oscillator: a zero-dimensional field theory . 27 4.2 Collective modes: phonons . 34 4.3 The Thermodynamic Limit . 39 4.4 Continuum Limit . 42 4.5 Exercises for chapter 4 . 47 5 Conserved Particles 53 5.1 Commutation and Anticommutation Algebras . 54 5.1.1 Heuristic Derivation for Bosons . 55 5.2 What about Fermions? . 57 5.3 Field operators in different bases . 57 5.4 Fields as particle creation and annihilation operators. 59 5.5 The vacuum and the many body wavefunction . 62 5.6 Interactions . 63 5.7 Identical Conserved Particles in Thermal Equilibrium . 68 5.7.1 Generalities . 68 5.7.2 Identification of the Free energy: Key Thermodynamic Properties . 71 5.7.3 Independent Particles . 73 5.8 Exercises for chapter 5 . 74 1 Chapter 0. c P. Coleman 04 6 Simple Examples of Second-quantization 79 6.1 Jordan Wigner Transformation . 79 6.2 The Hubbard Model . 86 6.3 Gas of charged particles . 88 6.3.1 Link with first quantization . 88 6.4 Non-interacting particles in thermal equilibrium . 90 6.4.1 Fluid of non-interacting Fermions . 91 6.4.2 Fluid of Bosons: Bose Einstein Condensation . 94 6.5 Exercises for chapter 6 . 100 7 Greens Functions 105 7.1 Interaction representation . 107 7.1.1 Driven Harmonic Oscillator . 111 7.2 Greens Functions . 116 7.2.1 Green's function for free Fermions . 117 7.2.2 Green's function for free Bosons . 120 7.3 Adiabatic concept . 121 7.3.1 Gell-Man Low Theorem . 123 7.3.2 Generating Function for Free fermions . 125 7.3.3 The Spectral Representation . 127 7.4 Many particle Green's functions . 130 7.5 Landau's Fermi Liquid Theory . 132 7.6 Exercises for chapter 7 . 141 8 Feynman Diagrams: T=0 145 8.1 Heuristic Derivation . 146 8.2 Developing the Feynman Diagram Expansion . 152 8.2.1 Symmetry factors . 159 8.2.2 Linked Cluster Theorem . 161 8.3 Feynman rules in momentum space . 163 8.3.1 Relationship between energy, and the S-matrix . 164 8.4 Examples . 166 8.4.1 Hartree Fock Energy . 166 8.4.2 Response functions . 170 8.4.3 Magnetic susceptibility of non-interacting electron gas . 172 8.4.4 Electron in a scattering potential . 177 8.5 The self-energy . 180 8.5.1 Hartree-Fock Self-energy . 181 8.6 Large-N electron gas . 182 8.7 Exercises for chapter 8 . 188 2 c 2004 P. Coleman Chapter 0. 9 Finite Temperature Many Body Physics 193 9.1 Imaginary time . 196 9.1.1 Representations . 197 9.2 Imaginary Time Green Functions . 199 9.2.1 Periodicity and Antiperiodicity . 200 9.2.2 Matsubara Representation . 201 9.3 The contour integral method . 204 9.4 Generating Function and Wick's theorem . 208 9.5 Feynman diagram expansion . 211 9.5.1 Feynman rules from Functional Derivative . 212 9.5.2 Feynman rules in frequency/momentum space . 216 9.5.3 Linked Cluster Theorem . 218 9.6 Examples of the application of the Matsubara Technique . 219 9.6.1 Hartree Fock at a finite temperature. 220 9.6.2 Electron in a disordered potential . 221 9.7 Interacting electrons and phonons . 229 9.7.1 α2F : the electron-phonon coupling function . 237 9.7.2 Mass Renormalization by the electron phonon interaction . 240 9.7.3 Migdal's theorem. 243 9.8 Appendix A . 245 9.9 Exercises for chapter 9 . 247 10 Fluctuation Dissipation Theorem and Linear Response Theory 253 10.1 Introduction . 253 10.2 Fluctuation dissipation theorem for a classical harmonic oscillator . 255 10.3 Quantum Mechanical Response Functions. 257 10.4 Fluctuations and Dissipation in a quantum world . 259 10.4.1 Spectral decomposition I: the correlation function S(t t ) . 259 − 0 10.4.2 Spectral decomposition II: the response function χ(t t ) . 260 − 0 10.4.3 Quantum Fluctuation dissipation Theorem . 260 10.4.4 Spectral decomposition III: fluctuations in imaginary time . 261 10.5 Calculation of response functions . 261 10.6 Spectroscopy: linking measurement and correlation . 265 10.7 Electron Spectroscopy . 269 10.7.1 Formal properties of the electron Green function . 269 10.7.2 Tunneling spectroscopy . 270 10.7.3 ARPES, AIPES and inverse PES . 273 10.8 Spin Spectroscopy . 275 10.8.1 D.C. magnetic susceptibility . 275 10.8.2 Neutron scattering . 275 10.8.3 NMR . 279 10.9 Electron Transport spectroscopy . 281 3 Chapter 0. c P. Coleman 04 10.9.1 Resistivity and the transport relaxation rate . 281 10.9.2 Optical conductivity . 284 10.9.3 The f-sum rule. 285 10.10Exercises for chapter 10 . 288 11 Electron transport Theory 293 11.1 Introduction . 293 11.2 The Kubo Formula . 297 11.3 Drude conductivity: diagramatic derivation . 300 11.4 Electron Diffusion . 306 11.5 Weak Localization . 311 11.6 Exercises for chapter 11 . 318 12 Path Integrals and Phase transitions 323 12.1 Introduction: Broken symmetry, coherent states and path integrals. 323 12.2 Coherent states and Grassman mathematics . 328 12.2.1 Completeness and matrix elements . 330 12.3 Path integral for the partition function . 332 12.4 General evaluation of Path Integral for non-interacting Fermions . 337 12.5 Hubbard Stratonovich transformation . 339 12.6 Superconductivity and BCS theory . 342 12.6.1 Introduction: Superconductivity pre-history . 342 12.6.2 The BCS Hamiltonian . 344 12.6.3 Computing Tc . 348 12.6.4 The structure of the Boguilubov quasiparticle and the BCS wavefunction350 12.6.5 The Nambu Greens function . 356 12.6.6 Twisting the phase: the Anderson Higg's mechanism . 360 A Appendix: Grassman Calculus . 364 A.1 Differentiation and Integration . 364 A.2 Change of variable . 365 A.3 Gaussian Integrals . ..

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    374 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us