L211 Logic and Mathematics 7

L211 Logic and Mathematics 7

L211 Logic and Mathematics 7. Lecture Number systems Norbert PREINING [email protected] http://www.preining.info/jaist/l211/2015e/ Tally marks Europe, North America etc History: the first notation systems for numbers Kanji area France, Spain, South America Forestry Unary numeral system What to do with big numbers? Egyptian number system 1 10 100 1000 10000 100000 1000000 Roman number system I 1 II 2 III 3 IV 4 V 5 VI 6 VII 7 VIII 8 IX 9 X 10 L 50 C 100 D 500 M 1000 MMXV Decimal systems Decimal system Decimal number system and poitional notation = 1000 + 1000 + 1000 + 100 + 100 + 1 + 1 + 1 + 1 三千二百四 = 3 · 1000 + 2 · 100 + 4 · 1 MMMCCIV 3203 = 3 · 1000 + 2 · 100 + 0 · 10 + 4 · 1 三千二百四 Reason of a positional notation system 3204 三千六百四 Which one is not a decimal notation system? MMMCCIV ! + 五百七十八 = 四千百八十二 Decimal system Number systems with base 2, 10, 16 10-base (decimal) 0 X k dndn−1 ::: d1d0 = dk 10 0 X k k=n (dndn−1 ::: d1d0)10 = dk 10 k=n Example 2-base (binary) 0 42 = 4 · 101 + 2 · 100 X k (bnbn−1 ::: b1b0)2 = bk 2 305 = 3 · 102 + 0 · 101 + 5 · 100 k=n 16-base (hexadecimal) 三千六百四 3604 0 X k + 五百七十八 + 578 (hnhn−1 ::: h1h0)16 = hk 16 = 四千百八十二 = 4182 k=n How many number symbols (digits) are necessary? Number of digits Usage of the binary system 0 X k 10-base (dndn−1 ::: d1d0)10 = dk 10 3204 I Morse code k=n Digits: 0, 1, 2, . , 9 I Electro-communication 0 I Conmputer X k 2-base (bnbn−1 ::: b1b0)2 = bk 2 110010000100 k=n Addition in base 2 Digits: 0, 1 111000010100 0 X + 1001000010 16-base (h h ::: h h ) = h 16k C84 n n−1 1 0 16 k = 1000001010110 k=n Digits: 0, 1, 2, . , 9, A, B, C, D, E, F Base 2 and base 16 Other bases? (3604)10 = (111000010100)2 = (E14)16 1110 0001 0100 1110 0001 0100 |{z} |{z} |{z} E 1 4 Base 12 (duodecimal) Base 60 (sexagesimal) 3 I Digits: 0, 1,. , 9, ,2 I Time: 12 hours, 12 months I Chinese calendar I Number of factors is big: 1=2; 1=3; 1=4; 2=3; 3=4 all have finite decimal representation I it is often called the best number system! Babylonian number system Other base 60 cases Base 20 (vigesimal) I 1h = 60min, 1min = 60sec I measurement of angles I Chinese calendar (5 × 12) Maya number system Other base 20 cases I Ainu language Last but not least I North and South America: Maya, Aztec, Tlingit, Inuit I Asia: Dzongkha, Santali I French: mixed base 20/60 system: quatre-vingts = 4 · 20 = 80 soixante-quinze = 60 + 15 = 75 I ... Papua New Guinea, Telefomin: base 27 Sources Telefol: http://www.number27.org/ Menu: http://nomchan.exblog.jp/15946226/ Other images: Wikipedia.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    7 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us