Noindent 328 <Quad W . HORN , J . SOKO <L OWSKI Initial

Noindent 328 <Quad W . HORN , J . SOKO <L OWSKI Initial

328 .. W period HORN comma J period SOKO L-suppress OWSKI nnoindentInitial conditions328 nquad on u areW given . HORN as follows , J . : SOKO nL OWSKI InitialEquation: conditions open parenthesis on 1 $ 3 u closing $ are parenthesis given .. as u openfollows parenthesis : x comma y comma 0 closing parenthesis = u sub 0 open parenthesis x comma y closing parenthesis on Capital Omega comma Equation: open parenthesis 1 4 closing parenthesis .. u sub t open parenthesis x comma y comman begin 0f closinga l i g n ∗g parenthesis = u sub 1 open parenthesis x comma y closing parenthesis on Capital Omega period uWe ( will assume x , that y the initial , 0 conditions ) = for v u andf theta0 g are( compatible x , with y those ) on nOmega , n tag ∗f$ ( 1 3 ) $gnn u f t g ( x , y , 0 ) = u f 1 g ( x , y ) on nOmega . n tag ∗f$ ( 1 4 ) $g for328 u commaW . HORN i period , J . SOKO e periodLOWSKI Initial conditions on u are given as follows : nendEquation:f a l i g n ∗g open parenthesis 1 5 closing parenthesis .. v open parenthesis x comma 0 closing parenthesis = v sub 0 open parenthesis x closing parenthesis = u sub 0 open parenthesis x comma y closing parenthesis bar sub Q comma Equation: open parenthesis 1 6 closing parenthesis .. v sub nnoindent We will assume that the initial conditions for $ v $ and $ ntheta $ are compatible with those t open parenthesis x comma 0 closing parenthesisu(x; y; =0) v sub = 1u open0(x; y parenthesis) on Ω; x closing parenthesis = u sub 1 open(13) parenthesis x comma y closing for $u ,$ i.e. parenthesis bar sub Q comma Equation: openut parenthesis(x; y; 0) = 1 7u closing1(x; y) parenthesis on Ω: .. theta open parenthesis x comma(14) 0 closing parenthesis = theta sub 0 period n beginWeWe conclude willf a l assumei g n ∗g this that section the by initial formally conditions showing for thatv and theθ are energy compatible of this system with those for u; i . e . vdecreases ( x period , .. Formally 0 ) comma = v onef can0 computeg ( the x energy ) of = this u structuref 0 g as follows( x period , y ) nmid f Q g , n tag ∗f$ ( 1After 5 multiplying ) $gnn v openf parenthesist g ( 4 x closing , parenthesis 0 ) by = u sub v tf and1 integratingg ( x the result ) = over Capital u f 1 Omegag ( one x receives , : y ) nmid f Q g , n tag ∗f$ ( 1 6 ) $gnn ntheta ( x , 0 ) = ntheta f 0 g . n tag ∗f$ ( 1 7 ) $g Equation: open parenthesis 1 8 closing parenthesisv(x; 0) = .. 2 tov0( thex) = poweru0(x; of y) 1jQ dt; to the power of d integral sub Capital(15) Omega open parenthesis bar u nendf a l i g n ∗g sub t bar to the power of 2 plus bar nabla u barvt(x; to0) the = powerv1( ofx) 2 = closingu1(x; y parenthesis) jQ; dxdy = integral sub Q Row 1(16) partialdiff u Row 2 partialdiff nu . u sub t dx period θ(x; 0) = θ0: (17) WeMultiplying conclude open this parenthesis section 7 by closing formally parenthesis showing by v sub that t and the integrating energy over of Q this and adding system the result to the integral d e c r e a s e s . nquad Formally , one can compute the energy of this structure as follows . of openWe concludeparenthesis this 8 closing section parenthesis by formally over showing Q yields that the energy of this system decreases . Formally , one can 2compute to the power the energy of 1 dt of to this the structure power of as d follows integral . sub Q open parenthesis bar v sub t bar to the power of 2 plus R bar v sub xx bar to the power nnoindent After multiplying ( 4 ) by $ u f t g$ and integrating the result over $ nOmega $ one receives : of 2After plus psi multiplying theta sub ( 1 4 bar ) by vu subt and x barintegrating to the power the result of 2 over minus Ω betaone receives bar v sub : x bar to the power of 4 plus alpha bar v sub x bar to the power of 6 plus bar theta bar closing parenthesis dx Equation: open parenthesis 1 9 closing parenthesis .. = integral sub Q fv t dx plus k integral sub Q open parenthesisn begin f a l theta i g n ∗g sub 0 minus theta closing parenthesis dx period 2 ^f 1 g dt ^f d g n int f nOmegaZ g ( nmid uZ f t g nmid ^f 2 g + nmid nnabla u nmid ^f 2 g This computation can be found in1 Sprekelsd and2 Zheng open2 parenthesis@u 1 989 closing parenthesis period Next we add open parenthesis 1 8 closing ) dxdy = n int f Q g2 n ldt e f t [ n(jbeginut j +fjarray ru j )gfdxdycg= n partial utdx:u nn n partial nnu nend(18)f array gn right ] u f t g parenthesis Ω Q @ν dxand . openn tag parenthesis∗f$ ( 1 1 9 closing 8 )parenthesis $g and see that the terms integral sub Q bracketleftbig sub partialdiff nu to the power of partialdiff u bracketrightbignendMultiplyingf a l i g n ∗g u ( sub7 ) by t dxvt commaand integrating and integral over subQ and Q fv adding t dx cancel the result period to Wethe getintegral of ( 8 ) over Q yields 2 to the power of 1 dt to the power of d integral sub Capital Omega open parenthesis bar u sub t bar to the power of 2 plus bar nabla u bar to the powernnoindent of 2 closingMultiplying parenthesis ( dxdyZ 7 ) Equation: by $ v openf parenthesist g$ and 20 integrating closing parenthesis over .. plus $ Q2 to $ the and power adding of 1 dt the to the result power of to d integral the integral sub Q of ( 8 ) over $Q$1 d yields 2 2 2 4 6 open parenthesis bar v sub2 tdt bar to(j thevt j power+R j ofvxx 2j plus+ Rθ1 barj vx vj sub−β xxj vx barj + toα thej vx powerj + j ofθ j) 2dx plus psi theta sub 1 bar v sub x bar to the power of 2 minus beta bar v sub x bar to theQ power of 4 plus alpha bar v sub x bar to the power of 6 plus bar theta bar closing parenthesis dx = k integral sub n begin f a l i g n ∗g Z Z Q open parenthesis theta sub 0 minus theta closing parenthesis dx= periodfvtdx + k (θ0 − θ)dx: (19) 2The ^f left1 g handdt side ^f ofd thisg equation n int f isQ theg time( derivativenmid ofv t f tQ g nmid ^Qf 2 g + R nmid v f xx g nmid ^f 2 g + n psi ntheta f 1 g nmid v f x g nmid ^f 2 g − nbeta nmid v f x g nmid ^f 4 g + nalpha nmid v Thisf x computationg nmid ^f can6 beg found+ innmid Sprekelsn andtheta Zhengn (mid 1 989 )) . Next dx wenn add= ( 1 8n int ) and (f 1Q 9 )g andfv see that t the dx + k n int f Q g R @u R ( termsnthetaQ[@ν ]futdx;0 gand −Q fvtdx nthetacancel .) We get dx . n tag ∗f$ ( 1 9 ) $g nendf a l i g n ∗g Z 1 d 2 2 nnoindent This computation can be found in Sprekels2 dt and(j Zhengut j + j ( r 1u j 989)dxdy ) . Next we add ( 1 8 ) Ω and ( 1 9 ) and see thatZ the terms $ n int f Q g [ ^f n partial u g f n partial nnu g ] u f t g dx 1 d 2 2 2 4 6 , $ and $ n int f+2Q dtg fv(j vt j t+R dx$j vxx j + cancel θ1 j vx .Wegetj −β j vx j +α j vx j + j θ j)dx (20) Q n begin f a l i g n ∗g Z = k (θ0 − θ)dx: 2 ^f 1 g dt ^f d g n int f nOmega g ( nmid u f t g nmidQ ^f 2 g + nmid nnabla u nmid ^f 2 g ) dxdy nn + 2 ^f 1 g dt ^f d g n int f Q g ( nmid v f t g nmid ^f 2 g + R nmid v f xx g nmidThe^f left2 handg + side ofn psi this equationntheta is thef time1 g derivative nmid ofv t f x g nmid ^f 2 g − nbeta nmid v f x g nmid ^f 4 g + nalpha nmid v f x g nmid ^f 6 g + nmid ntheta nmid ) dx n tag ∗f$ ( 20 ) $gnn = k n int f Q g ( ntheta f 0 g − ntheta ) dx . nendf a l i g n ∗g nnoindent The left hand side of this equation is the time derivative of t 330 .. W period HORN comma J period SOKO L-suppress OWSKI nnoindentSimilarly we330 integratenquad byW parts . HORN over Capital, J . SOKO Omegan toL theOWSKI power of minus to get : SimilarlyLine 1 minus we integral integrate sub 0 to by the partspower of over T integral $ n subOmega Capital^f Omega − g$ minus to get Capital : Delta u phi dxdt = integral sub 0 to the power of T integral sub Capital Omega minus nabla u nabla phi dxdt minus integral sub 0 to the power of T integral sub partialdiff Capital Omega minus partialdiff to then [ n powerbegin off a partialdiff l i g n e d g sub − n ton int the power^f T ofg uf phi0 g d sigma n int dt Linef nOmega 2 = minus− integral g nDelta sub 0 to theu powernphi of T integraldxdt sub = Capitaln int Omega^f T minusg f 0 u g Capitaln int Deltaf nOmega phi dxdt− plus g integral nnabla sub 0 tou then powernabla of Tn integralphi subdxdt partialdiff− Capital n int Omega^f T g minusf 0 ug sub n partialdiffint f n npartial to the powern ofOmega partialdiff− g n partial ^f n partial g^f u g f n g nphi d nsigma −dt nn phi d330 sigmaW dt .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    3 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us