Exoplanet Atmospheres and Interiors Types of Planets

Exoplanet Atmospheres and Interiors Types of Planets

Exoplanet Atmospheres and Interiors Types of Planets • Hot Jupiters – Most common, because of observaonal biases – Temperatures ~ 1000K • Neptunes – May resemble the gas giants in our solar system • Super-earths – Rocky? – Water planets? • Terrestrial Atmosphere Basics • Ρ(h) = P(0) e-h/h0 • h0=kT/mg – k = Boltzmann constant – T=temperature – m=mass of par?cle – g=gravitaonal acceleraon • Density falls off exponen?ally with height Atmospheric Complicaons Stars have relavely simple atmospheres • A few diatomic molecules Brown Dwarfs and Planets are more complex • Temperature Inversions (external heang) • Clouds – Probably exist in T dwarfs – precipitaon • Molecules • Chemistry Generalized Thermal Atmosphere • Blue regions are convecve = lapse rate Marley, ARAA, fig 1 Atmospheric Chemistry • Ionizaon equilibrium • Chemical equilibrium High T Low T Low P High P Marley, ARAA, Fig 4 Marley, ARAA, Fig 3 • 2 MJ planet, T=600K, g=10 Marley, ARAA, Fig 5 Condensaon Sequence Transit Photometry Transit widths may reveal high al?tude haze 2 2 Excess eclipse depth δ ≃ ((Rp+ nH)/R∗) – (Rp/R∗) H = pressure scale height n = number of scale heights For typical hot Jupiters, δ ≅ 0.1% Observaons: Photometry • Precision photometry of transi?ng planet can give temperature – Comparison with Teq gives albedo (for Rp) • Inference of Na D1,D2 lines in HD 209458: – Eclipse 0.0002 deeper in lines – Charbonneau et al 2002, ApJ, 568, 377 Observaons: Photometry • Precision photometry of transi?ng planet can give temperature 2 2 – fin = (1-A) L* πRp / 4πd 2 4 – fout = 4πRp σTp – Comparison with Teq gives albedo (for Rp) For A=0: TP=T*√(R*/2d) Hot Jupiters • A is generally small: no clouds • Phase curve -> atmospheric dynamics • Flux variaons -> day to night temperature variaons • Hot Jupiters expected to have jet streams Basic Atmospheric Circulaon – no rotaon (Hadley cells) Jupiter HD 189733b • Temperature: 970-1200K • Peak 30o East • Winds up to 8700 km/h • H atm. – 5% eclipse – (planet: 2.4%) – m-dot: 1010 g/s • P=2.2 days HD 189733b • Temperature: 970-1200K • Peak 30o East • P=2.2 days • H2 atm. • Blue color – Mie sca. – MgSiO3? Clouds in Kepler 7b • A=0.35 • Brightest point 41o west of substellar point • Minimum 25o east of substellar point • Demory et al. 2013 Observaons: Spectroscopy • Transmission spectroscopy of transi?ng planet NASA release 14-255 Observaons: Spectroscopy • Transmission spectroscopy of transi?ng planet Berta et al. 2012, NASA release 14-255 ApJ, 747, 35 Direct spectroscopy (BDs) • HR 8799c Water in 51 Peg b • Birkby et al. 2017, AJ, 153, 3 Water in 51 Peg b • Atmospheric Evaporaon • Important in hot Jupiters • Due to XUV irradiaon 3 – mass loss ~ επR FXUV/GMpKde • Example: HD 209458b (Vidal-Madjar et al. 2003, Nature, 422, 143) Atmospheric Evaporaon HD 209458b (Vidal-Madjar et al. 2003, Nature, 422, 143) 10 11 • m-dot ~ 10 -10 g/s (0.05 M⊕/Gyr) Planetary Interiors 3 • ρ = mp/(4/3π rp ) -3 • ρ = 1 gm cm : H2O • ρ < 1 gm cm-3: gas giant • ρ > 1 gm cm-3: rocky • Note: densi?es must be adjusted for compressibility Uncompressible: R ~ M-1/3 Gas Giants • H/He composi?on • EoS not well known under Jovian condi?ons – 20,000K, 70 Mbar • Metallic H needed to generate B fields Terrestrial Planets Composi?on: O, Fe, Mg, Si (+Ni, Ca, Al, S) • Core – Solid Fe – Liquid Fe + FeS outer core • Mantle – Inner mantle: • Perovskite (Mg,Fe)SiO3 • Magnesiowüs?te (Mg,Fe)O • Outer Mantle – Olivine (Mg,Fe)2SiO4 – Orthopyroxene (Mg,Fe)2Si2O6 – Clinopyroxene Ca(Mg,Fe)Si2O6 – Garnet (Ca,Mg,Fe,Mn)3 (Al,Mn,Fe,V,Cr)2 (SiO4)3 • Crust Small composi?onal differences do not measurably affect EoS Super-Earths • None available for detailed comparison • Models: R ~ M -0.274 (1 < M/M⊕ < 10) Planetary Surface Temperatures 4 4 4 • Tp = Tint + Teq • At young ages, Tint >> Teq • Tint from – Heat of accre?on – Gravitaonal semling – Radioac?ve decay – Ohmic dissipaon (hot Jupiters) – Tidal heang (non-zero e; binaries) • At the age of the solar system, Tint negligible Compability with Earth Details depends on • Rotaon • Insolaon • H2O abundance • Important for consideraons of habitability ½ ½ 2 1/8 Teq= (R* T*) /((2 a) (1-e ) ) Aside: Rogue Planets SIMP J013656.5+093347 • Spectral type: T2.5 • R sin i: 1.02 ± 0.02 RJup • τ< 950Myr (based on evolu?onary models) • Possible member of Car-near MG – 200 Myr – M: 12.7 ± 1.0 RJup – 0.2% probability of interloper • Gagné et al. 2017, ApJL, 841, L1 SIMP J013656.5+093347 The Coldest Brown Dwarf WISE J085510.83-071442.5 • Teff : 225-260K (Luhman 2014b, ApJL, 786, L18) • M: 1-10 MJup for ages 1-10 Gyr • π: 0.448±0.033 arcsec (Wright et al. 2014, AJ, 148, 82) • µ: 8.08±0.05 “/yr • d=2.23 pc; vtan= 85±9 km/s • Possible H2O clouds (Faherty et al. 2014 ApJL, 793, L16) .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    38 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us