Point process and graph cut applied to 2D and 3D object extraction Ahmed Gamal Eldin To cite this version: Ahmed Gamal Eldin. Point process and graph cut applied to 2D and 3D object extraction. Image Processing [eess.IV]. Université Nice Sophia Antipolis, 2011. English. tel-00737988 HAL Id: tel-00737988 https://tel.archives-ouvertes.fr/tel-00737988 Submitted on 3 Oct 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITY OF NICE - SOPHIA ANTIPOLIS - FRANCE GRADUATE SCHOOL STIC INFORMATION AND COMMUNICATION TECHNOLOGIES AND SCIENCES THESIS to fulfill the requirements for the degree of Doctor of Philosophy in Computer Science from the University of Nice - Sophia Antipolis Specialized in : Control,Signal and Image Processing presented by Ahmed GAMAL ELDIN Point process and graph cut applied to 2D and 3D object extraction Supervised by Xavier Descombes, and Josiane Zerubia and prepared at INRIA Sophia-Antipolis Mediterran´ ee´ in the Ariana research team Defended the 24th of October, 2011 Jury: M. Marc Berthod Emeritus Professor, INRIA President M. Fionn Murtagh Professor, University of London Reviewer Mrs. Florence Tupin Professor, Telecom ParisTech Reviewer M. Jean-Denis Durou Associate Professor, University of Toulouse Reviewer Mrs. Josiane Zerubia Director of Research, INRIA Director M. Xavier Descombes Director of Research, INRIA Supervisor M. Michel Gauthier-Clerc Director of Research, Tour du Vala Examiner M. Guillaume Perrin Research engineer, Thales Alenia Space Examiner Dedication I dedicate this to my very exceptional parents, to my mother who taught me every thing good in my life, I would not be what I am without her, to my father who created for me a beautiful environment where I can live and work, I owe them everything in my life and I will never be able to thank them for all what they did for me. God bless both of you... Acknowledgements I owe a very special acknowledgement to my supervisors, Josiane ZERUBIA and Xavier DESCOMBES. Josiane, thank you for having accepting me as part of your team, for your great support and encouragement. Thank you for always being there during and even after my thesis. Xavier, thank you believing in me even when I did not, thank you for being so understand- ing. I really learned a lot from you. Thank you for giving me all the freedom during my thesis, working with you was a real pleasure for me. After my two supervisors, I want to thank my friend Guillaume CHARPIAT. Thank you Guillaume for all your help, your gen- erous discussions, availability, it was a lot of fun to work with you. This work could not have been accomplished without you all. I would like to thank Professors MARC BERTHOD, Fionn MURTAGH, Florence TUPIN, Jean-Denis DUROU, Michel GAUTHIER-CLERC and Guillaume PERRIN. Thank you for accepting to be members of my thesis jury. Thank you for your effort, your interest and your kind attention during the defence. I owe a special acknowledgement to our ecologist collaborators. I would like to thank Yvon le MAHO, Michel Gauthier-Clerc and Arnaud Bechet´ for this collaboration, for all the interesting discussions and the efforts they made. I would like to thank every researcher on site who participated in this work: Onesime´ PRUD’HOMME, Celine Le BOHEC, Benjamin FRIESS, Yan ROPERT-COUDERT, Maryline Le VAILLANT, Claire SARAUX, Marion RIPOCHE, Remi´ GENER. I would like to start listing by friends who I want to thank with Alexandre FOURNIER who gave me the most significant advices during the early days of my PhD. Thanks to all my friends with whom I shared these three years, work and fun. Thank you Maria, Aymen, Giovanni, Csaba, Praveen, Aurelie,´ Vladmir, Sayma, Ioan, Guillaume Perrin, Mikael and Alexis. A special thank you as well to our very nice project assistants Corinne, Laurie and Christine. I would like to thank Giovanni GHERDOVICH with whom I worked a lot during my first PhD year. I would like to thank Professor Elena Zhizhina and the many other great visitors of our team with whom I had very enriching discussions. I would like to thank every person who helped during these three years. Summary The topic of this thesis is to develop a novel approach for 3D object detection from a 2D image. This approach takes into consideration the occlusions and the perspective effects. This work has been embedded in a marked point process framework, proved to be efficient for solving many challenging problems dealing with high resolution images. The accom- plished work during the thesis can be presented in two parts: First part: We propose a novel probabilistic approach to handle occlusions and perspective effects. The proposed method is based on 3D scene simulation on the GPU using OpenGL. It is an object based method embedded in a marked point process framework. We apply it for the size estimation of a penguin colony, where we model a penguin colony as an unknown number of 3D objects. The main idea of the proposed approach is to sample some can- didate configurations consisting of 3D objects lying on the real plane. A Gibbs energy is define on the configuration space, which takes into account both prior and data information. The proposed configurations are projected onto the image plane, and the configurations are modified until convergence. To evaluate a proposed configuration, we measure the simi- larity between the projected image of the proposed configuration and the real image, by defining a data term and a prior term which penalize objects overlapping. We introduced modifications to the optimization algorithm to take into account new dependencies that ex- ists in our 3D model. Second part: We propose a new optimization method which we call ”Multiple Births and Cut” (MBC). It combines the recently developed optimization algorithm Multiple Births and Deaths (MBD) and the Graph-Cut. MBD and MBC optimization methods are applied for the optimization of a marked point process. We compared the MBC to the MBD algorithms showing that the main advantage of our newly proposed algorithm is the reduction of the number of pa- rameters, the speed of convergence and the quality of the obtained results. We validated our algorithm on the counting problem of flamingos in a colony. Resum´ e´ en Franc¸ais L’objectif de cette these` est de developper´ une nouvelle approche de detection´ d’objets 3D partir d’une image 2D, prenant en compte les occultations et les phenom´ enes` de per- spective. Cette approche est fondee´ sur la theorie´ des processus ponctuels marques,´ qui a fait ses preuves dans la solution de plusieurs problemes` en imagerie haute resolution.´ Le travail de la these` est structure´ en deux parties: Premi`ere partie: Nous proposons une nouvelle methode´ probabiliste pour gerer´ les occultations et les ef- fets de perspective. Le modele` propose´ est fonde´ sur la simulation d’une scene` 3D utilisant OpenGL sur une carte graphique (GPU). C’est une methode´ orientee´ objet, integr´ ee´ dans le cadre d’un processus ponctuel marque.´ Nous l’appliquons pour l’estimation de la taille d’une colonie de manchots, la` ou` nous modelisons´ une colonie de manchots comme un nom- bre inconnu d’objets 3D. L’idee´ principale de l’approche proposee´ consiste echantillonner´ certaines configurations candidat compose´ d’objets 3D s’appuyant sur le plan reel.´ Une densite´ de Gibbs est definie´ sur l’espace des configurations, qui prend en compte des infor- mations a priori et sur les donnees.´ Pour une configuration proposee,´ la scene` est projetee´ sur le plan image, et les configurations sont modifiees´ jusqu’a` convergence. Pour evaluer´ une configuration proposee,´ nous mesurons la similarite´ entre l’image projetee´ de la con- figuration proposee´ et l’image reelle,´ definissant´ ainsi le terme d’attache aux donnees´ et l’a priori penalisant´ les recouvrements entre objets. Nous avons introduit des modifications dans l’algorithme d’optimisation pour prendre en compte les nouvelles dependances´ qui existent dans notre modele` 3D. Deuxi`emepartie: Nous proposons une nouvelle methode´ d’optimisation appelee´ ”Naissances et Coupe multiples” (”Multiple Births and Cut” (MBC) en Anglais). Cette methode´ combine la fois la nouvelle methode´ d’optimisation Naissance et Mort multiples (MBD) et les ”Graph- Cut”. Les methodes´ MBC et MBD sont utilisees´ pour loptimisation d’un processus ponctuel marque.´ Nous avons compare´ les algorithmes MBC et MBD montrant que les princi- paux avantages de notre algorithme nouvellement propose´ sont la reduction´ du nombre de parametres,` la vitesse de convergence et de la qualite´ des resultats´ obtenus. Nous avons valide´ notre algorithme sur le probleme` de denombrement´ des flamants roses dans une colonie. Contents General introduction 3 I Markov Marked Point Process 3 1 Introduction 5 1.1 Remote sensing . 5 1.1.1 Markov Random Field . 5 1.1.2 From MRF to Point Process . 7 1.2 Ecological application . 9 1.2.1 Flamingo counting . 9 1.2.2 Penguin counting . 10 1.3 Thesis organization . 12 2 Point Process 15 2.1 Spatial Point Process . 15 2.1.1 Basics of 1D and 2D Point Process . 16 2.1.2 Marked Point Processes . 17 2.1.3 Point Processes Models . 18 2.2 Markov Point Processes . 21 2.2.1 Conditional Intensity . 21 2.2.2 Cliques and Interactions Order .
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages178 Page
-
File Size-