Modern Cryptography: Lecture 13 Digital Signatures

Modern Cryptography: Lecture 13 Digital Signatures

Modern Cryptography: Lecture 13 Digital Signatures Daniel Slamanig Organizational ● Where to find the slides and homework? – https://danielslamanig.info/ModernCrypto18.html ● ow to conta!t me? – [email protected] ● #utor: Karen Klein – [email protected] ● Offi!ial page at #', )o!ation et!. – https://tiss.tuwien.ac.at/!ourse/!o$rseDetails.+html?dswid=86-2&dsrid,6/0. !ourseNr,102262&semester,2018W ● #utorial, #U site – https://tiss.tuwien.ac.at/!ourse/!o$rseAnnouncement.+html?dswid=4200.dsr id,-51.!ourseNum6er,10206-.!ourseSemester,2018W ● 8+am for the se!ond part: Thursday 31.21.2210 15:00-1/:00 (Tutorial slot; 2/26 Overview Digital Signatures message m / :m( σ; secret key skA Inse!$re !hannel p$bli! key pkA p$bli! key pkA σ σ :, 7igskA:m; 6 :, =rfypkA:m( ; 3: pkA -/26 Digital Signatures: Intuitive Properties Can 6e seen as the p$6li!9key analog$e of M3Cs with p$6li! >erifiability ● Integrity protection: 3ny modifi!ation of a signed message !an 6e detected ● 7o$r!e a$thenti!ity: The sender of a signed message !an be identified ● Non9rep$diation: The signer !annot deny ha>ing signed :sent) a message 7e!$rity :intuition;: sho$ld 6e hard to !ome $p with a signat$re for a message that has not 6een signed by the holder of the pri>ate key 5/26 Digital Signatures: pplications *igital signat$res ha>e many applications and are at the heart of implementing p$6lic9key !ryptography in practice ● <ss$ing !ertifi!ates 6y CAs (?$6lic %ey <nfrastr$!t$res;: 6inding of identities to p$6lic keys ● @$ilding authenticated !hannels: a$thenti!ate parties :ser>ers; in sec$rity proto!ols :e.g.( TL7; or se!$re messaging :Whats3pp( 7ignal, ...; ● Code signing: a$thenti!ate software/firmware :$pdates; ● 7ign do!$ments :e.g.( !ontra!ts;: )egal reg$lations define when digital signat$res are eq$ivalent to handwritten signat$res ● 7ign transa!tions: $sed in the !rypto!$rren!y realm ● et!. 4/26 Digital Signatures: Definition *8B<1<#<&N 12.1 3 :digital; signature scheme is a triple of ??T algorithms :Gen( 7ig( =rfy; su!h that: 1. #he key9generation algorithm Cen takes as inp$t the se!$rity parameter 1n and o$tputs a pair of keys :pk( sk; :we assume that pk and sk ha>e length n and that n !an 6e inferred from pk or sk;. 2. The signing algorithm 7ig takes as inp$t a pri>ate key sk and a message m from some message space M. It o$tp$ts a signature D( and we write this as D ← 7igsk:m;. 3. The deterministi! >erification algorithm =rfy takes as inp$t a pu6li! key ?k( a message m( and a signat$re D. It o$tp$ts a 6it 6 with 6,1 meaning >alid and 6,0 meaning in>alid. We write this as 6 :, =rfypk:m( D;. <t is reA$ired that( e+!ept possi6ly with negligi6le pro6ability o>er :pk( sk; ← Gen:1n;( we ha>e =rfypk:m( 7igsk:m;; , 1 for any message m ∈ M. 6/26 Some #emar$s on the De!nition ● The signing algorithm – may be deterministic or pro6a6ilistic – may be stateful or stateless (latter is the norm) ● The deterministi! >erifi!ation algorithm may 6e perfe!tly !orre!t :never fails) or may fail with negligi6le pro6ability ● 8>ery instan!e has an asso!iated message spa!e M :whi!h we assume to 6e impli!itly defined when seeing the p$bli! key; – <f there is a f$nction k s$!h that the message spa!e is {2( 1Gk(n; (with n 6eing the se!urity parameter;( then the signat$re scheme s$pports message length k(n; – We will later see how we can generically !onstr$!t signat$res schemes for ar6itrary message spa!es from any scheme that s$pports message length k(n; //26 %ormal Security &otions 'or Digital Signatures ● 3tta!k model :in!reasing strength; – 1o9message attack (NMA): Ad>ersary only sees p$6lic key – Handom message atta!k :HMA): Ad>ersary !an o6tain signatures for random messages (not in the !ontrol of the adversary; – 1on9adaptive chosen message attack (naCM3;: Adversary defines a list of messages for which it wants to o6tain signatures (before it sees the p$6lic key; – Chosen message attack (CMA): Ad>ersary !an adaptively ask for signat$res on messages of its choice 8/26 %ormal Security &otions 'or Digital Signatures ● Coal of an ad>ersary :de!reasing hardness) – 'niversal forgery (UB;: Adversary is given a target message for which it needs to o$tp$t a valid signat$re – 8xistential forgery (EB): Ad>ersary outputs a signat$re for a message of the adversaryIs !hoice ● 7ec$rity notion: atta!k model J goal of the ad>ersary ● Bor s!hemes $sed in practi!e: 3d>ersary !an not even a!hieve the weakest goal in the strongest atta!k model – 8'B9CM3: existential unforgea6ility under !hosen message atta!ks 0/26 ()%*CMA Security 3 signat$re scheme scheme K , :Cen( 7ig( =rfy) is existentially $nforgeabily $nder !hosen message attacks :8'B9CM3; se!$re( if for all ??T ad>ersaries A there is a negligi6le f$n!tion negl s.t. e$f9!ma ≤ ?rL7ig9forgeA,K:n;,1] negl:n; . 12/26 Some #emar$s on the De!nition ● &ne-time >s. many9time signat$res – #he num6er of queries to the ora!le may 6e limited, i.e.( only a single Auery is allowed vs. ar6itrary many are allowed ● Weak >s. strong $nforgea6ility – <n !ase of strong unforgea6ility the ad>ersary wins if it o$tputs a >alid signat$re even for a queried message( 6ut the signature differs from the one o6tained from the oracle ● &racle Q records (mi(Di; and winning !ondition is: :mN(DN; ∉ Q ● Not achie>able for re-randomiOable signature s!hemes – We consider only standard :weak; unforgea6ility 11/26 #S Signatures ● %eyGen: &n inp$t 1n pi!k two random n96it primes p(A( set N , pA( pi!k e s.t. g!d(e( P:1;; , 1, !omp$te d :, eQ1 mod P:1; o$tp$t :sk( pk; :, ::d ( N ;( :e (1;; ● 7ign: &n inp$t m ∈ Z1N and sk , :d, 1;( !omp$te and o$tput D :, md mod N ● =rfy: &n inp$t a p$6li! key pk , :e( 1;( a message m ∈ Z1N and a signature σ ∈ Z1N o$tp$t 1 if and only if m :, De mod 1 12/26 #S Signatures ● #o forge signature of a message m( the adversary( gi>en 1( e 6$t not d( m$st !ompute md mod 1( meaning in>ert the H73 f$n!tion at m. ● @$t H73 is one9way so this task sho$ld 6e hard and the scheme sho$ld 6e se!$re. Corre!t? ● &f !o$rse not… ● No9message attacks 1; &utp$t forgery (mN( DN) :, :1( 1). Valid since 1d = 1 mod 1 e 2) Choose D ∈ Z1* and !ompute m :, D mod N ● 8'B9CM3 atta!k – Ask signat$res D1( D2 for m1(m2 ∈ Z1* and o$tp$t :mN( DN; :, :m1 S m2 mod N( D1 S D2 mod N; 8>en if it wo$ld 6e sec$re( a message spa!e of Z1N is not desirable! 13/26 Extending the Message Space ● @lock9wise signing – Consider m :, :m1(R( mn; with mi ∈ M and !ompute D :, :D1(R( Dn; – 1eed to take !are to a>oid mix9and9match attacks :6lo!k reordering( e+changing blo!ks from different signatures( et!.; – <neffi!ient for large messages :one in>o!ation of the scheme per block; ● Hash9and9sign – Compress arbitrarily long message before signing 6y hashing them to a fi+ed length string $sing a hash f$n!tion – #he range of needs to be !ompatible with the message spa!e of the signat$re scheme 14/26 ,ash*and*Sign Paradigm (Construction 1./3) ● )et K , :Cen( 7ign( =rfy; 6e a signature s!heme for messages of length k:n;( and let Γ , :Cen ( ; 6e a hash f$n!tion with o$tp$t length k:n;. Constru!t signature scheme KI , :GenI ( 7ignI ( =rfy’; as follows: – n n n CenI: on inp$t 1 ( run Gen:1 ; to o6tain :pk( sk; and run Cen :1 ; to obtain s; the pu6li! key is :pk( s; and the pri>ate key is :sk( s;. – 7ignI: on inp$t a pri>ate key :sk( s; and a message m ∈ F2( 1}* ( o$tp$t σ E 7ignsk: :s, m;;. – =rfy’: on input a p$6li! key :pk( s;( a message m ∈ F2( 1}*, and a signat$re D( o$tp$t 1 if and only if =rfypk: :s, m;( D; , 1. # 8&H8M 12.4: If K is a sec$re signature scheme for messages of length k and Γ is !ollision resistant, then KI is a sec$re signat$re s!heme :for arbitrary9length messages). 15/26 ,ash*and*Sign Paradig" ● ?roof Idea – )et m1 (... ( mA be the messages A$eried 6y A and :mN( DN; the >alid forgery ● Case 1: :s( mN; , H:s( mi; for some i ∈ [q] : we ha>e a collision for H ● Case 2: H:s( mN; V :s( mi; for all i ∈ [AM : we ha>e that ( :s( mN;( σN; is a forgery for K ● Hash9and9sign in practi!e – 'sed 6y signature schemes $sed in pra!tice :H73 ?%C7W1 >1.4 signat$res, 7!hnorr( :8C)*73( R; – Hecall that we !onsider to 6e keyed for theoreti!al reasons and in practice would be any XgoodY !ollision9resistant hash fun!tion( e.g.( 7 39- 16/26 #S FD, Signatures ● Can we simply apply the hash9and9sign paradigm to H73? – No, not assuming !ollision resistant hashing :or any other reasona6le standard property of a hash f$nction;( as the underlying te+t6ook H73 signature s!heme does not pro>ide any meaningful se!urity ● @$t, we !an apply the idea of hash9and9sign and model the hash f$nction as a random oracle! – H73 Bull *omain ash :H739B* ; – #he random ora!le is !ollision resistant and destroys other Xdangero$s” alge6rai! properties – <mportant that range of is :!lose to; Z1N – !onstr$!ted >ia repeated application of an underlying !ryptographic hash fun!tion s$!h as 7 39- ● Ne>er say Xsigning , d/en!rypt the hashY when talking about signing :with H73;T – XMisunderstanding” d$e to !ommutativity of H73 private and p$6lic key operation – &ther signature s!hemes do usually not allow any s$!h analogy 17/26 #S FD, Signatures (Construction 1./10 ● %eyCen: On inp$t 1n pick two random n96it primes p(A( set N = pA( pi!k e s.t.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    26 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us