World-Sheet Supersymmetry and Supertargets

World-Sheet Supersymmetry and Supertargets

Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook World-sheet supersymmetry and supertargets Peter Browne Rønne University of the Witwatersrand, Johannesburg Chapel Hill, August 19, 2010 arXiv:1006.5874 Thomas Creutzig, PR Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Sigma-models on supergroups/cosets The Wess-Zumino-Novikov-Witten (WZNW) model of a Lie supergroup is a CFT with additional affine Lie superalgebra symmetry. Important role in physics • Statistical systems • String theory, AdS/CFT Notoriously hard: Deformations away from WZNW-point Use and explore the rich structure of dualities and correspondences in 2d field theories Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Sigma models on supergroups: AdS/CFT The group of global symmetries of the gauge theory and also of the dual string theory is a Lie supergroup G. The dual string theory is described by a two-dimensional sigma model on a superspace. PSU(2; 2j4) AdS × S5 supercoset 5 SO(4; 1) × SO(5) PSU(1; 1j2) AdS × S2 supercoset 2 U(1) × U(1) 3 AdS3 × S PSU(1; 1j2) supergroup 3 3 AdS3 × S × S D(2; 1; α) supergroup Obtained using GS or hybrid formalism. What about RNS formalism? And what are the precise relations? Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook 3 4 AdS3 × S × T D1-D5 brane system on T 4 with near-horizon limit 3 4 AdS3 × S × T . After S-duality we have N = (1; 1) WS SUSY WZNW model on SL(2) × SU(2) × U4. It has N = (2; 2) superconformal symmetry (as we will see). 3 Hybrid formalism of string theory on AdS3 × S gives a sigma model on PSU(1,1j2) . RR-flux is deformation away from WZ-point. [Berkovits, Vafa, Witten] Dual 2-dimensional CFT is deformation of symmetric orbifold 4 4 N SymN (T ) = (T ) =SN . It has N = (4; 4) superconformal symmetry. Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Recent progress: Chiral ring [Kirsch, Gaberdiel][Dabholkar, Pakman] Computed chiral ring in the NS-formulation. Results match the boundary computations, but at a different point in moduli space. Correlators are very simple C hO ( ; ¯ )O ( ; ¯ )O ( ; ¯ )i = 123 1 z1 z1 2 z2 z2 3 z3 z3 Q ∆ jzi − zj j ij where C123 = 0 or C123 = 1. • Why? Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Correspondence 1 Z SN =(2;2) + dτdσ Φ Def. + B-twist S GL(N)×GL(N) 2π −! GL(NjN) + Def. + B-twist F G (z) −! J (z) − Def. + B-twist X F B F G (z) −! J (z)J (z) + @J Def. + B-twist B U(z) −! J (z) : Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Outline Motivation Motivation World-Sheet SUSY N = (1; 1) world-sheet SUSY N = (2; 2) world-sheet SUSY Lie superalgebras Superalgebras and supergroups Free fermion resolution From World-Sheet SUSY to Supertargets Twisting and TCFT Relation for GL(NjN) Deformations 3 4 String theory on AdS3 × S × T Outlook Outlook Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook N = (1; 1) world-sheet SUSY WZNW model [di Vecchia, Knizhnik, Petersen, Rossi] • Bosonic Lie group H • Introduce superspace in 2d: θ1; θ2 • Map G :Σ2j2 7! H • Components ¯ α ¯ 1 ¯ G(z; z; θ ) = g + iθ + 2 iθθF • N = (1; 1) WZNW Lagrangian 1 Z SN =(1;1)[G] = d 2zd 2θ tr(DG¯ −1DG) WZNW 4λ2 k Z + d 2xd 2θdt tr(G−1@ GDG¯ −1γ DG) 16π t 5 Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Decoupling the fermions • N = (1; 1) for all λ, k • Enhanced affine symmetry at the WZNW point 8π λ2 = k • WZNW model is “rigid”: Fermions decouple • ftag basis for g • Redefine 7! χ a a χ = χat ; χ¯ =χ ¯at G = exp(iθχ) g exp(−iθ¯χ¯) 1 Z SN =(1;1)[G] = S0 [g] + d 2z (χ, @χ¯ ) + (¯χ, @χ¯) WZNW WZNW 2π Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Quantum measure • ( ; ) non-degenerate, invariant bi-linear form • Absorbed k into ( ; ) • Quantum measure effect from chiral decoupling of 0 fermions: SWZNW [g] has bilinear form 1 ( ; ) 7! ( ; ) + 2 < ; >Killing Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Current symmetries • G^ × G^ affine algebra a b 1 a b ab c (t ; t ) + < t ; t >Killing f J (w) Ja(z)Jb(w) ∼ 2 + c (z − w)2 (z − w) a b 1 a b ab c (t ; t ) + < t ; t >Killing f J¯ (w¯ ) J¯a(z¯)J¯b(w¯ ) ∼ 2 + c (z¯ − w¯ )2 (z¯ − w¯ ) • Free fermions (ta; tb) (ta; tb) χa(z)χb(w) ∼ χ¯a(z¯)¯χb(w¯ ) ∼ (z − w) (z¯ − w¯ ) • Implies N = (1; 1) superconformal symmetry (schematically) T (z) = (J(z); J(z)) + (χ(z); @χ(z)) G(z) = (J(z); χ(z)) + ([χ(z); χ(z)]; χ(z)) Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook N = (2; 2) superconformal symmetry • When can we construct the N = (2; 2) current algebra? c=3 U(w) T (w) + 1 @U(w) G+(z)G−(w) ∼ + + 2 (z − w)3 (z − w)2 (z − w) G±(z)G±(w) ∼ 0 ±G±(w) U(z)G±(w) ∼ (z − w) c=3 U(z)U(w) ∼ (z − w)2 • Fermionic currents G±, ∆(G±) = 3=2 • Bosonic U(1) current U, ∆(U) = 1 Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Manin decomposition [Getzler] • Current construction possible if algebra has Manin decomposition g = a+ ⊕ a− • a± isotropic Lie subalgebras i • fx g basis a+ • fxi g dual basis a− j j (xi ; x ) = δi k [xi ; xj ] = cij xk i j ij k [x ; x ] = f k x j j k jk [xi ; x ] = cki x + f i xk • 1 1 Fermions now ( 2 , 2 ) ghost systems i i χj (z)χ (w) ∼ δj =(z − w) Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook N = (2; 2) construction • Sugawara Virasoro tensor 1 T (z) = (:Ji J : + :J Ji: + :@χi χ : − :χi @χ :) 2 i i i i • Fermionic currents 1 G+(z) = J χi − c k :χi χj χ : i 2 ij k 1 G−(z) = Ji χ − f ij :χ χ χk: i 2 k i j • U(1) current i k k i mn j U(z) = :χ χi: +ρ Jk + ρk J + cmn f j :χ χi: : where i ρ = −[x ; xi ] Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Deformations • Wide range of deformations with background charges • Define a0 a0 = fx 2 g j (x; y) = 0 8 y 2 [a+; a+] ⊕ [a−; a−]g i i • a = p xi + qi x 2 a0 + + i Ga = G + qi @χ − − i Ga = G + p @χi • Implies i i Ua(z) = U(z) + p Ii (z) − qi I (z) 1 T (z) = T (z) + (pi @I (z) + q @Ii (z)) a 2 i i • Super-version of affine currents 1 I = J − c k :χj χ : − f jk :χ χ : i i ij k 2 i j k 1 Ii = Ji − f ij :χ χk: − c i :χj χk: k j 2 jk Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Deformations • Chiral ring unchanged as vector space • Actually, unchanged as ring: Deformation acts as spectral flow on the zero modes • Does change conformal dimension i ca = c − 6qi p Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Lie superalgebras and supergroups • Lie Superalgebra G = G0 ⊕G 1 • Z2 graded product [G0; G0] ⊂G 0 ( subalgebra) [G0; G1] ⊂G 1 [G1; G1] ⊂G 0 • Graded anti-symmetry [X; Y ] = −[Y ; X] [X; Y ] = −[Y ; X] [X; Y ] = [Y ; X] • Generalised Jacobi identity Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Lie superalgebras and supergroups • Fundamental supermatrix representation, gl(MjN) A B M = C D • Supertrace (invariant, supersymmetric bilinear form) strM = tr(A) − tr(D) (0) (0) (1) (1) • Grassmann envelope ηa Ta + ηb Tb (0) (1) ηa ;η b Grassmann elements (0) (1) Ta ; Tb basis for G = G0 ⊕G 1 • Supergroup (0) (0) (1) (1) exp ηa Ta + ηb Tb Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Free fermion resolution [Quella, Schomerus] • Introduce generators for super Lie algebra i a K S1 i S2a K • Non-degenerate invariant bi-linear form hA; Bi = kstr(AB) a a hS1; S2bi = kδb hK i ; K j i ≡ κij • Fermions transform in representation of bosonic subgroup i a i a b [K ; S1] = −(R ) bS1 • Fermionic fields c; c¯ a a c = c S2a; c¯ = c¯aS1 • Parametrization (Type I supergroup) c c¯ g = e gBe Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Free fermion resolution • Free fermion resolution: Introduce auxiliary fields a ¯ ¯a b = baS1; b = b S2a • Action WZNW S [g] = S0 + Spert • Screening charges Z 1 2 ¯ Spert = − d σ str(Ad(gB)(b)b) 4πk Σ • Bosonic WZNW, background charges, (1; 0) bc-ghosts 1 Z p S = SWZNW[g ] − dz2 hR(2) 1 ln det R(g ) 0 ren B 4π 2 B 1 Z + dz2 b @¯ca − b¯ @c¯a 2π a a Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Free fermion resolution • Quantum measure (again) i j ij ij ij i j hKB; KBiren = κ − γ ; γ = trR R ; • Free fermion currents i i i a b K (z) = KB + ba(R ) bc a a i a b j k i a j c b d S1(z) = k@c + k(R ) bκij c KB − 2 (R ) bκij (R ) d bcc c S2a(z) = −ba • Stress-energy tensor FF 1 i j i j a TG = 2 KBΩij KB + tr(ΩR )κij @KB − ba@c ; −1 ij ij ij 1 im jn (Ω ) = κ − γ + 2 f nf m; −1 a a i j a (Ω ) b = δb + (R κij R ) b: Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook Topological conformal field theory • BRST-currents/charges Q; Q¯ • Cohomology by Q or Q + Q¯ kernel(Q) H = phys image(Q) • Conformal tensor exact T (z) = [Q; G(z)] T¯(z¯) = [Q; G¯ (z¯)] • Cohomology ring: Position independent structure constants k φi φj ∼ aij φk Motivation World-Sheet SUSY Lie superalgebras From World-Sheet SUSY to Supertargets Outlook TCFT from N = (2; 2) by twisting • Positive B-twist 1 T + (z) = T (z) + @U(z) ; twisted 2 1 T¯ + (z¯) = T¯(z¯) + @¯U¯ (z¯) : twisted 2 • Gives TCFT with c = 0 • ∆(G+;

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    36 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us