Micronutrients in Long-Term Care (LTC): Issues and opportunities for improvement by Ivy Lam A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Kinesiology Waterloo, Ontario, Canada, 2014 © Ivy Lam 2014 AUTHOR’S DECLARATION This thesis consists of material all of which I authored or co-authored: see Statement of Contributions included in the thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii STATEMENT OF CONTRIBUTIONS Chapter 7 was a joint effort of several co-authors. Portions of this chapter has been accepted for publication and copyright has been assigned to the Canadian Journal of Dietetic Practice and Research. Lam I, Keller H, Duizer L, Stark KD. Micronutrients on the Menu: Enhancing the quality of food in Long-Term Care for regular, non- therapeutic menus. Can J Diet Pract Res. 2015;76(1). (Pagination not yet finalized) with only the following notable exceptions: 1) increased methodological details in the thesis, 2) inclusion of 3 figures detailing how micronutrient contents of current Long-Term Care menus compared to Super-Menus in meeting the Recommended Dietary Allowance/Adequate Intakes of vitamin D, vitamin E, and potassium, and 3) a 5-day Super-Menu sample menu. The inclusion of this article as part of this thesis has been approved by the editor of the journal. This study was designed and conducted by Ivy Lam and Dr. Heather Keller. Ivy Lam performed all the data collection and analysis. Dr. Lisa Duizer and Dr. Ken Stark contributed to the formatting, review, correction, and presentation of the tables in this chapter. Chapter 8 was also a joint effort of several co-authors. Portions of this chapter has been accepted for publication and copyright has been assigned to the Journal of Nursing Home Research: Lam ITL, Keller HH, Duizer LM, Stark KD, Duncan AM. Nothing Ventured, Nothing Gained: Acceptability testing of micronutrient fortification in Long-Term Care. J Nurs Home Res. 2014; 1(1). (Pagination not yet finalized) iii with the exceptions of: 1)increased methodological detail, and 2) supplementary data (e.g. recruitment letters, specific survey results) in the appendices. The inclusion of this article as part of this thesis has been approved by the editor of the journal. This study was designed and conducted by Dr. Heather Keller and Ivy Lam. Dr. Lisa Duizer, Dr. Ken Stark, and Dr. Alison Duncan formed the advisory committee to guide the creation of interview questions, and suggested potential experts for key informant interviews. Ivy Lam and Dr. Heather Keller conducted all of the webinars, key informant interviews, and in-person focus groups. Note- taking during focus groups was done by Kaylen Pfisterer. All aspects of this thesis not listed above were authored by myself, Ivy Lam. iv Abstract BACKGROUND: Malnutrition is common among long-term care (LTC) residents, yet there is limited research on micronutrient (vitamin and mineral) malnutrition in the LTC setting. Micronutrient deficiencies may exacerbate symptoms of dementia, depression, infections, osteoporosis, and other prevalent conditions in LTC. PURPOSE: This research accomplishes phase 1 of a multi-phase study, with the overall research objective of investigating the potential and extent of micronutrient malnutrition in LTC and identifying and developing food-first strategies to improve micronutrient intake in LTC residents. This was done through four sub-studies (detailed below): METHODS & FINDINGS: Each method and respective findings/conclusions are described below. Sub-Studies 1 and 2: Scoping Review Observational (SRO) and Intervention (SRI) Methods: A rigorous scoping review was conducted using selected key terms in four health-related electronic databases. The initial search identified 2248 eligible titles and abstracts for screening with inclusion/exclusion criteria. Results: SRO (n=50 citations): Intake for vitamin D, folate, calcium, vitamin E and B6 were consistently <50% of the Recommended Dietary Allowance (RDA) regardless of divergent food intake assessment methods. More than one study found biomarkers to be low for vitamin D, C, folate, and iron in LTC residents. SRI (n=25 citations): Vitamin D and calcium were the most common micronutrients to be included in both pill supplementation and food fortification interventions. Different formulations (e.g. single vs. multi-nutrient) were trialed, making comparisons difficult. Supplementation and fortification demonstrated efficacy but no studies comparing these strategies were identified. Conclusion: Findings suggest that micronutrient intake and biochemical status are suboptimal for key nutrients in LTC. Single nutrient interventions predominated and more work on efficacy of multi- nutrient physiological doses, whether in supplemental or fortification formulations is needed. Limited fortification studies have been completed and there is a need to determine efficacy for prevention as compared to supplementation. More research on fortification doses and formulations that are acceptable and efficacious is also required. Menu Analysis (MA) and Super-Menus (SM) Methods: Regular, non-therapeutic menus (week 1, all meals) from diverse LTC homes (n=5) across Canada were analyzed for micronutrient content using Food Processor with the Canadian Nutrient File. EaTracker was used to determine Canada’s Food Guide servings. Site dietitians provided home recipes/portion sizes, and validated menu analyses. SM were designed to meet micronutrient needs without increasing volume and calories, considering the preferences and portion sizes used in LTC. Results: Despite planning to and generally meeting CFG recommendations, menus’ nutrient content varied significantly across homes. Micronutrients of greatest concern across all menus were vitamins D (8.90 ± 5.29 µg/d) and E (5.13 ± 1.74 mg/d). Folate, v magnesium, and potassium were also below recommended values. SM were significantly higher in several nutrients as compared to home menus, but still were unable to meet vitamin D (11.2 ± 2.54 µg, mean 56% RDA), E (12.6 ± 4.08, 84% RDA) and potassium (4018 ± 489 mg, 85%) recommendations. Conclusion: Evidently, current guidelines for menu planning may be inadequate to address micronutrient needs, and more nutrient-dense strategies need to be explored in LTC. Careful menu planning results in most micronutrients recommendations being met. Acceptability Testing (AT) Prior to implementation, potential interventions should be assessed for their need, feasibility, and acceptability with knowledge users. Methods: Online LTC Staff webinar focus groups, expert Key Informant interviews and in-person focus groups (residents and family) were conducted to develop and determine the acceptability of a micronutrient fortification strategy. Polling and rating questions provided quantitative data to confirm qualitative data. Results: Focus groups and key informant interviews provided insight into potential food vehicles for fortification (e.g. soups, desserts, condiments), production and regulatory issues, and helped to develop the strategy to minimize anticipated barriers and promote uptake. Development of outsourced/pre-made fortified products was the preferred intervention, with mandatory training and clear protocols for preparers to ensure appropriate use. Conclusion: Knowledge users can envision food fortification as a potential intervention if products are easy to access and incorporate into current production systems. All stakeholders desire efficacy research to support use of this strategy in LTC. OVERALL: Triangulation of methods (SRI, SRO, MA/SM, and AT) and findings offers a multidimensional understanding of potential micronutrient deficiencies in LTC and food-first strategies that can be used to prevent this form of malnutrition. In general, food-first interventions in LTC to prevent or ameliorate micronutrient deficiency are lacking and quality menu planning using the DRI as a guide and food fortification are plausible strategies. Further work is needed to determine the relationship between micronutrient intake and biomarkers of function; does sufficient micronutrient nutrition support the overall health and quality of life of residents. Greater knowledge and awareness of micronutrient qualities of foods and of best practices in food-preparation methods through better training and education of LTC health providers is needed. As a food fortification strategy is further developed, involvement of multi-level stakeholders is needed to ensure uptake. This work provides foundation for a micronutrient food fortification strategy to address malnutrition in LTC. vi Acknowledgements “Teach us to number our days, that we may gain a heart of wisdom.” Psalm 90:12 We know so little about how our choices might influence our paths. I would, then, like to dedicate this work to those who have influenced my choices: To Mum and Dad, for teaching me to respect my elders and setting an example in loving and caring for our elders. To my Family, much love and thanks. To my supervisor, Dr. Heather Keller, for your contagious passion for aging and nutrition – evident to me as I sat in my second year nutrition at U of Guelph. It is thanks to your vision, guidance, perseverance, and wisdom over the years that this work has become what it is today. It is a joy to be able to know you as my professor, mentor, and friend. | To my
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages282 Page
-
File Size-