Calculus Formulas and Theorems

Calculus Formulas and Theorems

Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9. cot .r tlt lrr sirr.,l * C .l 10. [,nr'., ,1., lrr1scr'.i * Iarr.r f C .J 1i. cotr] +C .[r,rr,rdr:]nlcscr 12. ,"r' r d,r - tan r: * C | 13. /*". r tarr.r'dr - sr'<'.r| (' .l 14. n""'r dr :-cotr:*Cl l 15. /.'r.''t.ot r r/l' : ,'sr'.r r C .t 16. [ ,urr'r cl.r- larr.r - .r + (' J tT. [ ---!! -:lArctan({)+c .l o'1t" a \a/ 18 f )- Jffi:Arcsin(i)-. 2t8 Formulas and Theorems IV. Formulas and Theorems 1. Lirnits ancl Clontinuitv A furrctiorry:.f (r) is c'ontinuousa,t.r - c if: i) l'(a) is clefirrecl(exists) ii) exists.and Jitl,/(.r') iii) hru .l(.r) : ./(rr) Othelrvise..f is <lisr:ontinrrorrsat .r' - rr. Tire liniit lirrr l(r ) exislsif anclorrh'il iroth corresporrciirrgone-si<le<l linrits exist a,ncla,r'e etlrtrl tlrtrt is. lrgr,,l'(.r): L .:..= .l'(.r) - I' - ./(.r) ,lirn, ,lirl 2. Intemrccliatc- \rahre Theroettt A func'tion lt , .l (r) that is r'orrtinrrt.rrrsr-rrr a t:krserlinten'a,l fo.b] takes on every value bct'uveerr./(rr ) arrd ./(6). Notc: If ,f is corrtiriuorlsorr lrr.lr] an<1.l'(a) ancl .l'(1r)difler in sigrr. then the ecluatiou .l'(.,)- 0 has at leu,stotte soirttiotritr the opetritrterval (4.b). 3. Lirrritsof Ilatiorial Frui<'tiorrsas .r + +:r; /('] lirrr -o if the <legreeof ./(.r') < thc clcglee of rt(r') .r'+i\ l/\.t J ',.2 ',') ,. l'.x;rtrr1,l,':lit,r ,. - {l .r'+r. .1"' ] .) ',//, \ '2. lirrr is irrlirriteil tlre,leglee ol ' tlrerleglee of 17(r) -tr : ./{.r') ., 9\.1 / , ,. .rr + 2ll' r.xiulll)l(': nlil L )c .r'++x. J'' - ai /'/,) 3. litl # it fiuite if the rlegteeof ./(.r:)- the degreeof .q(.r) .r'+f - r/(.uJ Notc: The limit u,ill be the rtrtio of the leaclingc'ciefficient of .f(r;) to.q(r). '2.r2-iJ.r -2 2 r-xallrl)lc: llllr : - t(),r'- 5r2 5 Formulas and Theorems 2I9 4. Horizontal ancl\rt'rtir:al As)'rnptotes 1. AIineg-bisnlurrizontalasvniptott'<-rfthegraphof q:./(.r') ifeither lirrr l(.r';=l; ,,r (r) : b .Itlt_ .f 2. A lirie .t - e is a vcrti<'al as)'rrrptotc of tlie graph of tt - .f (.r) if eitirel .l(.,,)= *rc ur. ./(.r')- +x. .,.hr, ,\) 5. Avcragc trrrrlIrrstarrtilll(-olls Ilat<' of ('lrarrgt' 1. Avt'ragt'Ratc of ('lratrgc:If (.r'9.yrr)attri (.r'l.ql) irle lroitrtsorr the glairlt <ftq - .l'(t). tltert tlte a,velirg()ritte of c'harrgeof il u-ith rerspectto .r' ovcl tlrc itrtclr-al lr'11..rt; is ly l!_r1'_l!,,) lr !1, ' .l'1 .l'9 .r'l ,r'() l.r 2. Ittstatrtnrit'orrsRatc o1 (1-l',ltrg,',I1 (,r'1y..r/9)is a lroirrt orr the gralrlr oI rl ,-,.l'(.r).tiurrr the itrstautArreoLlsrate of chirrigt,ofi7 n'ith rt,spt,r'tto.r' at ,r'11is .f''(.r'1;). 6. Dcfirritiorr of t,lrc l)r.rir-ativt' -lll lEP,r' !y)--ll:'J .f'(.,) t'(,,) 11,1, Tlrt' la,tt<'rclcfirritiotr ol tlrt' <k'tir';rtivt.is tlrt' irrstarrtirlr('()usrirtt, of charrgt' of' .l (.r) u-itlr resltec:tto .t at .r -. (t. Georrletrit'alir'.thtr <lerir':rtiveo1a fittlt'ti9lt at a lr,iltt is tlrt'sl'1re,f t1e'tatrg<'ttt litrt' t, tho graph of the firnc'tion at tltat lioirrt. 'fhc 7. Nrrrrrlrcr(' :ls a lirrrit 1. li'r (r + 1)" -( n++a \ fl / 2. lini(1 + rr); ( n -\) 8. Roller'sTheorerrr If .l'is c't-rntituu.rttson ln.0] arrrlciiff'elentiablt'on (a.b) srrt'hthat.l'(rr).., l'(1,).tht'n thcle' is at leirstotte ttutttberc itr the opetrintelval (o.b) srrc'hthat.l/(r') - 0. 9. Nlcan Valuc Thcorcrrr If / is cotrtitnrortsott ln.lil aucl cliffelentiable on (o.f). then there is at 1t:astout' nurrilrer l/1.\ -J)l!l-It^r '/ "'t l iti (n.b; .tttlr tlt;tt - I - f'1, tt tI 220 Formulas and Theorems 1i) Extreme - Vaiue Tlieorem If / is contirmouson a closeclinterval lo.l.,].then./(.r) has both a tnaxinrum aurl a minirnumon la.b]. 11. To firid the rnaximrrrnand nrirrinuruvalues of a furrc'ti<)\tt =,/(.r'). loc'ate 1. the point(s) r,r'hclc .f'(.r) c'harrges sign. To firrri the c'atrcliclatesfirst fincl lvhcre '(.r:) ,f - 0 or is infinite rlr cltterstrot t:xist. 2. thc t:trrlpoittts. if :rtn'. ort tltt' rlotttaitr <lf ,/(.r'). Corrrpalc' thc frurctiorr va,lues at trll of thcsc points lir firrrl the tnaxiruuuls an(l ntirtitttttttts. l 12 Let ./ lic'cliffclcntialrit'firr rr <.1'< 1.,tttt<l torttintrotrs for rr { .r <. lt. l. If ,f''(.r)> 0 for ('v('l'\'.r'irr(rr.L). therr.f is itrct't'asingorr frr.1l]. 2. If ./'(.r'){ 0 for evelv.r'irr (o.L). tht'tt.f is clt't'rt'asrtrgorr [4.1l]. l') _t,). Srippr-,seth:rt .f'"(;r) t'xists ort tlte itrtelva,l(rr. lr). 1. If ,f"(t') ) 0 irr (a.b).tlrcn.f is <'orrcr,veupu,rrr'<l irr (a./r). '). If .f"(.r) { 0 irr (rr.L).tlrerr .f is corrc'tr,ve(lo$:lrwfrlcl irr (rr./r). To lot'trtethe points of irrfkrc'tir.rrttfi tt -.1'(.r').firxl the proitrtsr'vhere .l'"(r') - () or u'ltt'r't:.f"(.r') 'Ilten fails to cxist. l'irest,'arethe orrh'r'uclirl'r1,'t;lyllere .f (.r') rnar. hal't'a poirrt of irillectitxt. test tlresepoints to urirkcsure tha,t ,l'"(.,).- 0 on ont'sitlt'arrtl ,f"(.r) > 0 <.rtttlu'other'. 1.1 Diffcrerrtialrrlitv irnplies r'ontiuuitt': If a frrnr:tiorris cliflereltialrlt' a,t a poirrt .r'- rr. it is 'I'he t'<.irrtinuousat that 1.loirrt. convcrst'is falst'. i.e. c'ontintritvrkrcs not iurpll'cliffert'ntiabilitr.. 15 LorrtrlLirr<'aritr- arr<1 Litrcal Approxittratiorr 'l'iie liriear trpproxitnzrtiottof ./(.r')rrear.t'-.t0 is giverrlx'4:./(.,'e) *.1'(.l'1)(.r' .re). Tir estiuratc the slope of a gralrh at a poirrt rha,n a trrngerrt lirx-'to tltc graph at tliat point. Arrother rva\. is (lx' using u grtrphit s cak'nla,tor') to "zoonr in" aroLtn<lthe point itt cluestiorr urrtil the glaph "kroks'' straight.'fhis rrretliocl alnrost ahva'"s \il)r'ks. If u'c' "zot.rtttin" att<l ther glaph Lr,rks stlaiglrt at a point. sa)'.r': o. then the funr:tiorr is loca,ll)'lincar at that point. flre graph of u : ].r:l has a sharp (:olner' .rt :f :0. This col'll€rrc'arlllot lre stlrot-rtheclout lte "zc.ronringin" r'epeatecllv.Consecluetrtll'. the clerivative of l.r' cioes not exist at .r' : 0. henc'e.is not locallr' Iinear at .r' : 0. Formulas and Theorems 221 1Li. CourlraringRatcs of C'hatrgc Tlrt't'xpotretrti:rl func'tir)u!: c' gt'<lu'sverv lapirlh.AS.r'-+ tc u,h.ilethe fttgarithmic,fulr.tion l/ .. lrr.r' glo\\'s vt'r'r' skx.r,i-u'a.s .r' -) )c. Erpotrerttial frruc'tiorrslike u -. 2' rtr !/ : r,,'llr.()\\-ntol.er:rpiclly as.r +:r tharr an), positive '1.'ht'fitttt'tiott <if .r. - -+ l)()\\'('1 i/ hr.r' gr'o\\'ssl<lu'er as .t x tltiil a1\r lotx,orrstarrt lt1;lvrr<1niai. \\i' sar'. that as .r'-+ )c: l(r\ lt|') l. It.tt gl')\\':l;r-1 1,1. llrirrr ,/i,r I il lirrr - \ ,r'il lirrr {t. r .r z/{,r') .r .\.l(.r') fi.l (r') gltxls fhster thatr a(.r') as.r'-+ )c. therr q(,r') gr'owsslolr,tr tlu.rn.l'(.r.)AS.r. + rc. '19 2. ./(.r) arr<lr7(.r') grou, at the sarnt' ratt,as .r' + r if lir,r L (tr is firrite ancl ,. ,\ q(.r,) l0 rrouzt'r'o). Fol t'xanrlllt'. 1. r' gtrxls l;rstcr tlrarr.r.:iils.r, + rc sirrr.r,lirrr { -. :r, .t ' '2. .r'l gr',,1'slirstcl tlrarr hr.r' :rs .r.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    11 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us