Higher Gauss Sums of Modular Categories

Higher Gauss Sums of Modular Categories

Modular categories Higher Gauss sums Arithmetic properties Witt invariance Higher Gauss sums of modular categories Yilong Wang Louisiana State University [email protected] Joint work with Andrew Schopieray and Siu-Hung Ng April 13, 2019 Southern Regional Number Theory Conference 1/18 I C-linear abelian: Hom spaces are finite-dimensional C-vector spaces =∼ I Monoidal: ⊗, αU;V;W :(U ⊗ V) ⊗ W −! U ⊗ (V ⊗ W) (Pentagon axiom), 1 I Duality: (V_; 1 ! V ⊗ V_; V_ ⊗ V ! 1) I Semisimple, Irr(C) finite. C(X; Y) = δX;YC for X; Y 2 Irr(C). 1 2 Irr(C). I Fusion rule M Z X ⊗ Y = NXYZ: Z2Irr(C) K0(C) := spanCfIrr(C)g is the Grothendieck ring with multiplication given by ⊗. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Fusion categories Fusion category over C (generalization of Rep(G), Rep(H)): 2/18 =∼ I Monoidal: ⊗, αU;V;W :(U ⊗ V) ⊗ W −! U ⊗ (V ⊗ W) (Pentagon axiom), 1 I Duality: (V_; 1 ! V ⊗ V_; V_ ⊗ V ! 1) I Semisimple, Irr(C) finite. C(X; Y) = δX;YC for X; Y 2 Irr(C). 1 2 Irr(C). I Fusion rule M Z X ⊗ Y = NXYZ: Z2Irr(C) K0(C) := spanCfIrr(C)g is the Grothendieck ring with multiplication given by ⊗. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Fusion categories Fusion category over C (generalization of Rep(G), Rep(H)): I C-linear abelian: Hom spaces are finite-dimensional C-vector spaces 2/18 I Duality: (V_; 1 ! V ⊗ V_; V_ ⊗ V ! 1) I Semisimple, Irr(C) finite. C(X; Y) = δX;YC for X; Y 2 Irr(C). 1 2 Irr(C). I Fusion rule M Z X ⊗ Y = NXYZ: Z2Irr(C) K0(C) := spanCfIrr(C)g is the Grothendieck ring with multiplication given by ⊗. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Fusion categories Fusion category over C (generalization of Rep(G), Rep(H)): I C-linear abelian: Hom spaces are finite-dimensional C-vector spaces =∼ I Monoidal: ⊗, αU;V;W :(U ⊗ V) ⊗ W −! U ⊗ (V ⊗ W) (Pentagon axiom), 1 2/18 I Semisimple, Irr(C) finite. C(X; Y) = δX;YC for X; Y 2 Irr(C). 1 2 Irr(C). I Fusion rule M Z X ⊗ Y = NXYZ: Z2Irr(C) K0(C) := spanCfIrr(C)g is the Grothendieck ring with multiplication given by ⊗. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Fusion categories Fusion category over C (generalization of Rep(G), Rep(H)): I C-linear abelian: Hom spaces are finite-dimensional C-vector spaces =∼ I Monoidal: ⊗, αU;V;W :(U ⊗ V) ⊗ W −! U ⊗ (V ⊗ W) (Pentagon axiom), 1 I Duality: (V_; 1 ! V ⊗ V_; V_ ⊗ V ! 1) 2/18 I Fusion rule M Z X ⊗ Y = NXYZ: Z2Irr(C) K0(C) := spanCfIrr(C)g is the Grothendieck ring with multiplication given by ⊗. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Fusion categories Fusion category over C (generalization of Rep(G), Rep(H)): I C-linear abelian: Hom spaces are finite-dimensional C-vector spaces =∼ I Monoidal: ⊗, αU;V;W :(U ⊗ V) ⊗ W −! U ⊗ (V ⊗ W) (Pentagon axiom), 1 I Duality: (V_; 1 ! V ⊗ V_; V_ ⊗ V ! 1) I Semisimple, Irr(C) finite. C(X; Y) = δX;YC for X; Y 2 Irr(C). 1 2 Irr(C). 2/18 Modular categories Higher Gauss sums Arithmetic properties Witt invariance Fusion categories Fusion category over C (generalization of Rep(G), Rep(H)): I C-linear abelian: Hom spaces are finite-dimensional C-vector spaces =∼ I Monoidal: ⊗, αU;V;W :(U ⊗ V) ⊗ W −! U ⊗ (V ⊗ W) (Pentagon axiom), 1 I Duality: (V_; 1 ! V ⊗ V_; V_ ⊗ V ! 1) I Semisimple, Irr(C) finite. C(X; Y) = δX;YC for X; Y 2 Irr(C). 1 2 Irr(C). I Fusion rule M Z X ⊗ Y = NXYZ: Z2Irr(C) K0(C) := spanCfIrr(C)g is the Grothendieck ring with multiplication given by ⊗. 2/18 Rigidity of the duality: (V_; 1 ! V ⊗ V_; V_ ⊗ V ! 1). (idV ⊗ evV) ◦ αV;V_;V ◦ (coevV ⊗ idV) = idV Modular categories Higher Gauss sums Arithmetic properties Witt invariance Graphical calculus on morphisms: 3/18 Modular categories Higher Gauss sums Arithmetic properties Witt invariance Graphical calculus on morphisms: Rigidity of the duality: (V_; 1 ! V ⊗ V_; V_ ⊗ V ! 1). (idV ⊗ evV) ◦ αV;V_;V ◦ (coevV ⊗ idV) = idV 3/18 Two ways to define pivotal dimensions (taking values in C(1; 1) = C) A pivotal structure j of C is called spherical if dL(V) = dR(V) for all V 2 C. C spherical fusion ) categorical dimension dim(V) := dL(V). P 2 Global dimension: dim(C) = V2Irr(C) dim(V) . TrC(f ) 2 C(1; 1) for f 2 C(V; V): insert f in suitable position. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Spherical structure A pivotal structure on C is an isomorphism of monoidal functors __ j : idC ! (−) . 4/18 A pivotal structure j of C is called spherical if dL(V) = dR(V) for all V 2 C. C spherical fusion ) categorical dimension dim(V) := dL(V). P 2 Global dimension: dim(C) = V2Irr(C) dim(V) . TrC(f ) 2 C(1; 1) for f 2 C(V; V): insert f in suitable position. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Spherical structure A pivotal structure on C is an isomorphism of monoidal functors __ j : idC ! (−) . Two ways to define pivotal dimensions (taking values in C(1; 1) = C) 4/18 TrC(f ) 2 C(1; 1) for f 2 C(V; V): insert f in suitable position. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Spherical structure A pivotal structure on C is an isomorphism of monoidal functors __ j : idC ! (−) . Two ways to define pivotal dimensions (taking values in C(1; 1) = C) A pivotal structure j of C is called spherical if dL(V) = dR(V) for all V 2 C. C spherical fusion ) categorical dimension dim(V) := dL(V). P 2 Global dimension: dim(C) = V2Irr(C) dim(V) . 4/18 Modular categories Higher Gauss sums Arithmetic properties Witt invariance Spherical structure A pivotal structure on C is an isomorphism of monoidal functors __ j : idC ! (−) . Two ways to define pivotal dimensions (taking values in C(1; 1) = C) A pivotal structure j of C is called spherical if dL(V) = dR(V) for all V 2 C. C spherical fusion ) categorical dimension dim(V) := dL(V). P 2 Global dimension: dim(C) = V2Irr(C) dim(V) . TrC(f ) 2 C(1; 1) for f 2 C(V; V): insert f in suitable position. 4/18 Twist: =∼ θ(V): V −! V . θ(V) = θV idV; 8V 2 Irr(C). (Vafa) For all V 2 Irr(C), θV is a root of unity. Modular categories Higher Gauss sums Arithmetic properties Witt invariance Braided spherical category Braiding: =∼ cVW : V ⊗ W −! W ⊗ V Hexagon axioms. 5/18 Modular categories Higher Gauss sums Arithmetic properties Witt invariance Braided spherical category Braiding: =∼ cVW : V ⊗ W −! W ⊗ V Hexagon axioms. Twist: =∼ θ(V): V −! V . θ(V) = θV idV; 8V 2 Irr(C). (Vafa) For all V 2 Irr(C), θV is a root of unity. 5/18 Pictorially (omitting j): In particular, S1;V = dim(V), and SV;W = SW;V. Source of examples: finite quadratic modules C(G; q), Z(Rep(G)), quantum groups C(g; k) at roots of unity, VOA, subfactor, ... Modular categories Higher Gauss sums Arithmetic properties Witt invariance Modular category Definition A braided spherical fusion category is called modular if its S-matrix SV;W = TrC(cW;V_ ◦ cV_;W); V; W 2 Irr(C) is invertible. 6/18 Source of examples: finite quadratic modules C(G; q), Z(Rep(G)), quantum groups C(g; k) at roots of unity, VOA, subfactor, ... Modular categories Higher Gauss sums Arithmetic properties Witt invariance Modular category Definition A braided spherical fusion category is called modular if its S-matrix SV;W = TrC(cW;V_ ◦ cV_;W); V; W 2 Irr(C) is invertible. Pictorially (omitting j): In particular, S1;V = dim(V), and SV;W = SW;V. 6/18 Modular categories Higher Gauss sums Arithmetic properties Witt invariance Modular category Definition A braided spherical fusion category is called modular if its S-matrix SV;W = TrC(cW;V_ ◦ cV_;W); V; W 2 Irr(C) is invertible. Pictorially (omitting j): In particular, S1;V = dim(V), and SV;W = SW;V. Source of examples: finite quadratic modules C(G; q), Z(Rep(G)), quantum groups C(g; k) at roots of unity, VOA, subfactor, ... 6/18 Modular category ) ρ : SL(2; Z) ! PGL(K0) 0 −1 1 1 7! S; 7! T: 1 0 0 1 I Congruence subgroup property. ∼ I SL(2; Z) = MCG(Σ1;0). ∼ L ∼ L 1 _ I K0 = V2Irr(C) C(V; V) = V2Irr(C) C( ; V ⊗ V ). I Representations of MCG(Σg;n) can be defined on M _ _ C(a1 ⊗ · · · an; b1 ⊗ b1 ⊗ · · · ⊗ bg ⊗ bg ) a1;:::;an;b1;:::;bg2Irr(C) . I They are provided by a (2+1)-TQFT associated to C. Modular categories Higher Gauss sums Arithmetic properties Witt invariance TV;W := θVδV;W, V; W 2 Irr(C). In particular, ord(T) < 1. S- and T-matrices are called the modular data of C. 7/18 ∼ I SL(2; Z) = MCG(Σ1;0). ∼ L ∼ L 1 _ I K0 = V2Irr(C) C(V; V) = V2Irr(C) C( ; V ⊗ V ). I Representations of MCG(Σg;n) can be defined on M _ _ C(a1 ⊗ · · · an; b1 ⊗ b1 ⊗ · · · ⊗ bg ⊗ bg ) a1;:::;an;b1;:::;bg2Irr(C) . I They are provided by a (2+1)-TQFT associated to C.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    43 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us