Anesthetic Effects on Intraoperative Neurophysiological Monitoring

Anesthetic Effects on Intraoperative Neurophysiological Monitoring

Anesthetic effects on intraoperative neurophysiological monitoring JongHae Kim Department of Anesthesiology and Pain Medicine School of Medicine, Catholic University of Daegu Contents • Effects on Sensory evoked potentials Somatosensory evoked potential Brainstem auditory evoked potential Visual evoked potential • Effects on Motor evoked potential Pharmacologic Effects of Anesthetics on Sensory Evoked Potentials Somatosensory Evoked Potentials Brainstem Auditory Evoked Potentials Visual Evoked Potentials Volatile Anesthetics General Characteristics • Synaptic transmission > axonal conduction • Polysynaptic pathway (cortical recordings) > Oligosynaptic pathway (spinal cord and subcortical recording) • VEP (cortical activity) > BAEP (brainstem and subcortical activities) General Characteristics • ↑SSEP latency, • ↑central conduction time, • ↓amplitude • Dose dependent • Minimally affect the subcortical waveform Effect of Inhaled Anesthetics on SSEP (Anesthesiology 2003;99:716-37) Morphologic changes of waveforms c) Isoflurane ANESTHESIOLOGY 1986;65:35–40 Sevoflurane and Desflurane • Like isoflurane • Permit higher concentrations • At ≤1.5 MAC, ↑cortical latency, ↓amplitude, minimal effects on subcortical SSEP Nitrous Oxide General Characteristics • 60-70% of N2O: ↓ cortical SSEP amplitude 50% • Cortical latency and subcortical waves unaffected • Potentiates effect of volatile and IV anesthetics Morphologic changes of waveforms and compounding effects of N2O c) Isoflurane ANESTHESIOLOGY 1986;65:35–40 Compounding effects of N2O on early cortical waveform Anesthetic Early cortical Waveform Drug/Concentration Latency Amplitude Halothane 1.5 MAC + 60% N2O 10-15% ↑ ~80% ↓ 1.5 MAC (alone) 10-15% ↑ ~70% ↓ Enflurane 1.5 MAC + 60% N2O Not recordable Not recordable 1.5 MAC (alone) > 25% ↑ ~85% ↓ Desflurane 1.5 MAC + 65% N2O Complete loss of waveform Complete loss of waveform 1.5 MAC ≤ 10% ↑ < 50% ↓ Compounding effects of N2O on early cortical waveform Anesthetic Early cortical Waveform Subcortical Waveform Drug/Concentration Latency Amplitude Isoflurane 0.5 MAC + 60% N2O < 10% ↑ 50-70% ↓ Negligible 0.5 MAC (alone) < 15% ↑ < 30% ↑ Negligible 1.0 MAC + 60% N2O 10-15% ↑ 50-75% ↓ Negligible 1.0 MAC (alone) 15% ↑ ≒50% ↓ Negligible 1.5 MAC + 60% N2O > 15% ↑ > 75% ↓ 5% ↑ in latency 1.6 MAC (alone) 15-20% ↑ 60-70% ↓ 5% ↑ in latency 20% ↓ in amplitude Intravenous Anesthetics General Characteristics • Affect SSEP less than inhaled anesthetics • Low doses: minimal effects • High doses: slight-moderate ↓amplitude and ↑latency • Subcortical potentials unaffected Barbiturates • Dose-dependent ↑in latency, ↓in amplitude in early cortical SSEP • Cortical waves are affected more than subcortical, midlatency waveforms • Synaptic transmission > axonal conduction (≒ volatile anesthetics) • Thiopental (5 mg/kg): latency 10-20% ↑, amplitude 20-30% ↓ (less than 10 min) • Barbiturate coma allows recording cortical SSEPs Barbiturates Drug/Dose Early Cortical Subcortical Waveform Waveform Latency Amplitude Thiopental 2.5-5.0 mg/kg <10% ↑ 5-30% ↓ Negligible 75 mg/kg 15% ↑ 60% ↓ Negligible Pentobarbital Up to 20 mg/kg ≒ 10% ↑ 45% ↓ None (latency) 20% ↓(amplitude) Etomidate • Increases cortical SSEP amplitude (400%) Not related to myoclonus1 d/t altered balance btw inhibitory and excitatory influences at the cerebral cortex level2 • Decreases subcortical amplitude (50%) 1. Kochs E, Treede RD, Schulte J: Increase in somatosensory evoked potentials during anesthesia induction with etomidate. Anaesthesist 1986; 35:359–64 2. Samra SK, Sorkin LS: Enhancement of somatosensory evoked potentials by etomidate in cats: An investigation of its site of action. ANESTHESIOLOGY 1991; 74:499–503 Ketamine • Increases cortical SSEP amplitude (max. effect within 2-10 min of bolus) ≒etomidate • No effect on cortical latency or subcortical waveforms Etomidate and Ketamine Drug/Dose Early Cortical Waveform Subcortical Latency Amplitude Waveform Etomidate 0.3-0.4 mg/kg + 2 mg/kg/h <10% ↑ 40-180% ↑ None (latency) 50% ↓(amplitude) 1 mg/kg 10% ↑ 150% ↓ Negligible Ketamine 0.5 mg/kg No effect No effect No effect 2-3 mg/kg + 2 mg/kg/h No effect 0-30% ↑ Negligible Propofol • ≒ Barbiturates • Rapid emergence for timely postop. neurologic assessment • 2.5 mg/kg: no changes in cortical and subcortical amplitudes, increased cortical latency (8%) and CCT (20%) • Cortical SSEP is best preserved (> N2O, midazolam, sevoflurane) Propofol Drug/Dose Early Cortical Waveform Subcortical Latency Amplitude Waveform 2.5 mg/kg <10% ↑ No change Negligible 2.5 mg/kg, then 10 mg/kg/h 10-15% ↑ 50% NA + sufentanil 0.5 mcg, then 0.25 mcg/kg/h Benzodiazepine • Diazepam (0.1-0.25 mg/kg): mild↓ in N- 20 amplitude, moderate ↓ in later wave cortical amplitude, abolished very long latency peaks (200-400 ms) • Midazolam (0.2-0.3 mg/kg): modest ↓ in amplitude, slight ↑of latency Benzodiazepine Drug/Dose Early Cortical Waveform Subcortical Latency Amplitude Waveform Midazolam 0.1-0.3 mg/kg <5% ↑ 25-40% ↓ Negligible Diazepam 0.1-0.25 mg/kg Minimal ↓ NA Opioids • Unimportant changes in latency and amplitude • No significant effect on SSEP (up to fentanyl 130 mcg/kg), Bolus > Infusion • Alfentanil: modest amplitude depression • Remifentanil < fentanyl Opioids • Subarachnoid meperidine blocks voltage- dependent Na+ channels: 60%↓amplitude, 10%↑latency • Subarachoid fentanyl (25 mcg), morphine (20 mcg/kg) + sufentanil (50 mcg), morphine (15 mcg/kg): no significant chagnes Opioids Drug/Dose Early Cortical Waveform Subcortical Latency Amplitude Waveform Morphine 0.25 mg/kg < 10% ↑ ≒ 20% ↓ NA Fentanyl 2.5 mcg/kg + N2O 5-10% ↑ Variable No change 25-100 mcg/kg < 10% ↑ 10-30% ↓ Negligible Sufentanil Sufentanil + N2O + 5-10% ↑ ≒ 50% ↓ No change 0.5%isoflurane/1 mcg/kg + infusion 5 mcg/kg Sufentanil (alone) ≒ 5% ↑ ≒ 40% ↓ No change (latency) Amplitude: 40% ↓ 1 mcg/kg + Sufentanil 5-10% ↑ No change NA propofol Opioids Drug/Dose Early Cortical Waveform Subcortical Latency Amplitude Waveform Remifentanil (with 0.4 MAC isoflurane) 1 mcg/kg + 0.2 NA 15-30% ↓ NA mcg/kg/min 2.5 mcg/kg + 0.5 30-40% ↓ mcg/kg/min 5.0 mcg/kg + 1.0 ≒ 40% ↓ mcg/kg/min Alfenanil 10 mcg/kg alone NA 50% ↓ NA 100 mcg/kg + 2 with N2O No effect 40% ↓ Clonidine and Dexmedetomidine • Clonidine: no change in latency and amplitude • Dexmedetomidine: affects amplitude minimally • During isoflurane anesthesia, dexmedetomidine blunts isoflurane’s effect on SSEP amplitude1. 1. Bloom M, Beric A, Bekker A: Dexmedetomidine infusion and somatosensory evoked potentials. J Neurosurg Anesthesiol 2001; 13:320–2 Clonidine and Dexmedetomidine Drug/Dose Early Cortical Waveform Subcortical Latency Amplitude Waveform Clonidine 2-10 mcg/kg No effect No effect 10% Amplitude ↓ No effect (latency) Dexmedetomidine Low sedative dose NA ≒ 10% ↓ ≒ 20% Amplitude ↓ High sedative dose NA ≒ 30% ↓ ≒ 10% Amplitude ↓ Neuromuscular Blocking Drugs • No effects on SSEP, BAEP, or VEP • Improve waveform quality through elimination of the EMG artifact Regional Administration • Local infiltration & subarachnoid block: abolish SSEPs • Epidural block: depends on dose and dermatome • IV lidocaine: unlikely to interfere with intraop. monitoring Drug/Dose Early Cortical Waveform Subcortical Latency Amplitude Waveform Lidocaine 1.5 mg/kg, then 3 mg/kg/h 5% ↑ 25-30% ↓ Negligible Implications for Perioperative Monitoring • Volatile anesthetics: 1.0 MAC alone • Desflurane or sevoflurane: 1.5-1.75 MAC • IV anesthetics > volatile anesthetics • Propofol-sufentanil reduce amplitude significantly1 1. Borrissov B, Langeron O, Lille F, Gomola A, Saillant G, Riou B, Viars P: Combination of propofol-sufentanil on somatosensory evoked potentials in surgery of the spine. Ann Francaises d Anesth et de Reanimation 1995; 14:326–30 Implications for Perioperative Monitoring • Preserve amplitude ! • Low baseline amplitude: > 50 yr, congenital scoliosis, paralytic scoliosis, spinal stenosis, spinal tumor, other preexisting neurologic deficits Strategies to Enhance the amplitude and reproducibility of SSEPs • High-pass 30-Hz digital filtering1 • Substitution of propofol for N2O • Eliminating N2O • Substitution of remifentanil for fentanyl & N2O • If N2O is necessary, combine it with midazolam2 • Adjuncts(dexmedetomidine, clonidine, neuroaxial opioids) reduce MAC 1. Kalkman CJ, ten Brink SA, Been HD, Bovill JG: Variability of somatosensory cortical evoked potentials during spinal surgery: Effects of anesthetic techniques and high-pass digital filtering. Spine 1991; 16:924–9 2. Koht A, Schutz W, Schmidt G, Schramm J, Watanabe E: Effects of etomidate, midazolam, and thiopental on median nerve somatosensory evoked potentials and the additive effects of fentanyl and nitrous oxide. Anesth Analg 1988;67:435–41 Strategies to Enhance the amplitude and reproducibility of SSEPs • Ketamine • Etomidate: bolus 0.5-1 mg/kg + infusion 20-30 mcg/kg/min1 • Low concentrations of volatile anesthetics + etomidate or propofol (anesthetic depth) + vasodilator and β- blocker (control BP and myocaridal stress) • Sevoflurane permits faster SSEP recovery2 1. Sloan TB, Ronai AK, Toleikis JR, Koht A: Improvement of intraoperativesomatosensory evoked potentials by etomidate. Anesth Analg 1988; 67:582–5 2. Ku ASW, Irwin MG, Chow B, Gunawardene S, Tan EE, Luk KDK: Effect of sevoflurane/nitrous oxide versus propofol anaesthesia on somatosensory evoked potential monitoring of the spinal cord during surgery to correct scoliosis. Br J Anaesth 2002; 88:502–7 Summary (Periop. Implications) • Volatile anesthetics: 0.5 MAC with N2O or 1.0 MAC without N2O • Desflurane, Sevoflurane:

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    88 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us