Linear Prediction (LPC)

Linear Prediction (LPC)

ELEN E4896 MUSIC SIGNAL PROCESSING Lecture 6: Linear Prediction (LPC) 1. Resonance & The Source-Filter Model 2. Linear Prediction (LPC) 3. LP Representations 4. LP Synthesis & Modification Dan Ellis Dept. Electrical Engineering, Columbia University [email protected] http://www.ee.columbia.edu/~dpwe/e4896/ E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 1 /16 1. Resonance • Resonance is ubiquitous in physical systems e.g. plucked/struck string, drum head A room “coloration” B vocal tract C Time • Resonances D ↔ Poles easily implemented 00 in LTI filters Position Velocity E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 2 /16 Singe Pole-Pair Resonance x[n] y[n] • Simple resonance = + Second-order IIR z-1 Band Pass Filter 2rcosωc z-1 imag 1 2 0.5 -r r 0 ωc -0.5 -1 z-plane -1 -0.5 0 0.5 1 real )| jw ωc ωc |H(e Q = B B ≈ 2(1-r) 0 0 0.1 0.2 0.3 ω / π impulse_bpf.pd E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 3 /16 Resonances in Speech • Vocal Tract (throat + tongue + lips) acts as variable resonator resonances = “formants” 4000 3000 freq / Hz 2000 1000 ^ 0 e 0 0.5 1 1.5 h ε z w tcl c θ I n timeI z / s I d ay m has a watch thin as a dime E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 4 /16 Source-Filter Model • Separation of: Source: fine structure in time/frequency Filter: subsequent shaping by physical resonances Formants t Pitch Glottal pulse train Vocal tract Voiced/ resonances Radiation Speech unvoiced + characteristic Frication f noise t Source Filter • Advantages Good match to real signals Salient pieces E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 5 /16 2. Linear Prediction (LPC) • LPC = Linear Predictive Coding remove redundancy in signal try to predict next point as linear combination of previous values p s[n]= a s[n k]+e[n] k − k=1 th a k are p order linear predictor coefficients { e [ n ] } is residual “innovation” a/k/a prediction error • Transfer function S(z) 1 1 = = E(z) 1 p a z k A(z) − k=1 k − all-pole “autoregressive” (AR) modeling E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 6 /16 Voice Modeling & LPC Direct expression of source-filter model • p s[n]= a s[n k]+e[n] k − k=1 Pulse/noise Vocal tract excitation 1 e[n] H(z) = /A(z) s[n] H(z) |H(ejω)| f z-plane acoustic tube model of vocal tract is all-pole vocal tract resonances change slowly ~ 10-20ms but: nasals E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 7 /16 Estimating LPC Models • You can “see” -40 resonances in -60 -80 a spectral slice: energy / dB -100 0 1000 2000 3000 freq / Hz We can find LPC coefficients ak • { } to minimize energy of residual e [ n ] : p 2 e2[n]= s[n] a s[n k] − k − n n k=1 differentiate w.r.t. ak & solve end up with p linear equations involving autocorrelations r ( j k )= s[n j]s[n k] ss | − | − − n E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 8 /16 LPC Illustration 0.1 0 windowed original -0.1 -0.2 LPC residual -0.3 0 50 100 150 200 250 300 350 400 time / samp dB original spectrum 0 LPC spectrum -20 -40 residual spectrum -60 0 1000 2000 3000 4000 5000 6000 7000 freq / Hz • Actual poles: z-plane E4896_L06_lpc_diary E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 9 /16 Short-Time LP Analysis • Solve LPC for each ~20 ms frame 8 6 freq / kHz 4 2 0 20 1 15 0.5 10 12 5 0 0 Imaginary Part -0.5 -5 -10 -1 -1 0 1 -15 0 0.2 0.4 0.6 0.8 1 Real Part 8 6 freq / kHz 4 2 0 0.5 1 1.5 2 2.5 3 time / s E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 10 /16 3. LP Representations • Can interpret LPC filter fit many ways: • Picking out resonances if signal was source + resonances, should find them • Low-order spectral approximation minimizing e 2 [ n ] also minimizes E(ejω) 2 | | different from e.g. Fourier approximation... Finding & removing smooth spectrum • 1 A ( z ) is smooth approximation of S(z) S(z) 1 = E ( z )= S ( z ) A ( z ) is “unsmoothed” S(z) E(z) A(z) ⇒ • Signal whitening removing linear dependence makes residual like white noise (iid, flat spectrum) E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 11 /16 Alternative Forms • Many formulations for pth order all-pole IIR: predictor coefficients a / polynomial A(z) { k} roots λ = r e j ω i of A(z) { i i } reflection coefficients (for lattice filter structure) Line Spectral Frequencies (LSF) • Choice depends on: mathematical convenience numerical stability statistical properties (e.g. for coding) opportunities for modification E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 12 /16 4. LPC Synthesis • LP analysis on ~20ms frames gives prediction filter A ( z ) and residual e[n] recombining them should yield perfect s[n] coding applications further compress e[n] Encoder Filter coefficients {ai} Decoder |1/A(ej!)| Represent Input f s[n] & encode LPC Output analysis e^[n] s^[n] Represent Excitation All-pole Residual & encode generator filter e[n] 1 t H(z) = -i 1 - "aiz e.g. simple pitch tracker ➝ “buzz-hiss” encoding Pitch period values 16 ms frame boundaries 100 50 0 -50 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 time / s E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 13 /16 LPC Warping Replacing delays z-1 with allpass elements z + α • αz +1 warps frequencies but not magnitudes Original 8000 6000 P W 4000 = 0.6 Frequency 0.8 A 2000 0.6 0 0.5 1 1.5 2 2.5 3 Time 0.4 Warped LPC resynth, = -0.2 8000 0.2 A = -0.6 6000 0 0 0.2 0.4 0.6 0.8 P 4000 ^ W Frequency 2000 0 0.5 1 1.5 2 2.5 3 Time http://www.ee.columbia.edu/~dpwe/resources/matlab/polewarp/ E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 14 /16 Cross-Synthesis • Mix residual (source) of one signal with resonances (filter) of another or: just use white noise as excitation formants carry phonemes ➝ vocoder E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 15 /16 Summary • Resonances (poles) color sound • Source + Filter model decouples excitation and resonances • Linear Prediction is a simple way to model and implement resonances (filter) • Many interpretations, representations, modifications E4896 Music Signal Processing (Dan Ellis) 2013-02-25 - 16 /16.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    16 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us