DEVELOPMENT AND OPTIMIZATION OF A WIDE BASE FEA TRUCK TIRE MODEL FOR PREDICTION OF TIRE-ROAD INTERACTIONS by Adam Cameron Reid A Thesis Submitted in Partial Fulfillment Of the Requirements for the Degree of Master of Applied Science In The Faculty of Engineering and Applied Science University of Ontario Institute of Technology April 2015 © 2015 Adam C. Reid ABSTRACT The most important aspect of any land-type vehicle is the efficiency in which it can translate energy from an engine, motor, or external source to the ground in an effort to move. Currently, the most efficient way to do so is through the use of pneumatic tires, which are the only link between the chassis and the ground interface. With recent advancements in the computational efficiency of modern computers, there has been a dynamic movement towards virtual modeling and experimentation of pneumatic tires. This thesis provides a detailed analysis of the selection, construction, validation, and possible applications for a Finite Element Analysis (FEA) based tire model. Through the use of an Adaptive Response Surface Method (ARSM) optimization algorithm, the newly constructed wide base FEA truck tire model underwent a parameter-tuning procedure of its materials until the behaviour of the virtual model closely matched the behaviour of the physical tire. The optimized tire model achieved a minimum of 1.78% error in the amount of rolling resistance force measured during steady-state driving conditions between the physical and simulated experiments. In addition, the static vertical deflection of the virtual tire model was able to be minimized to only 0.42% error in comparison to the physical tire. After the optimization process was completed, the FEA wide base truck tire model was used in virtual isolation experiments to populate an analytical in-plane and out-of-plane rigid ring model for use on rigid surfaces. This process has been completed in an effort to aid in the study, understanding and experimentation related to pneumatic tire dynamics. ii TABLE OF CONTENTS ABSTRACT ....................................................................................................................... II TABLE OF CONTENTS ............................................................................................... III LIST OF FIGURES ........................................................................................................ VI LIST OF TABLES .......................................................................................................... IX NOMENCLATURE ........................................................................................................ XI ACKNOWLEDGEMENTS ........................................................................................ XIII CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW ......................... 1 1.1 MOTIVATION ......................................................................................................... 1 1.2 OBJECTIVES AND SCOPE ........................................................................................ 2 1.3 OUTLINE OF THESIS ............................................................................................... 5 1.4 LITERATURE REVIEW ............................................................................................. 6 1.4.1 The Pneumatic Tire ........................................................................................ 6 1.4.2 Tire Dynamics .............................................................................................. 10 1.4.3 Longitudinal Force Generation ................................................................... 13 1.4.4 Cornering Force Generation ....................................................................... 14 1.4.5 Analytical Tire Modeling ............................................................................. 15 1.4.6 FEA Tire Modeling ...................................................................................... 21 1.4.7 Advanced Optimization Techniques ............................................................. 25 1.4.8 Evolutionary Algorithms (EA) ..................................................................... 26 1.4.9 Monte Carlo Methods .................................................................................. 26 1.4.10 Adaptive Response Surface Methodology (ARSM) Algorithms ................... 27 iii 1.4.11 Parameter-Tuning ........................................................................................ 27 CHAPTER 2: FEA TIRE CONSTRUCTION .......................................................... 29 2.1 MODELING PROGRAMS ........................................................................................ 29 2.2 DIFFICULTIES AND LIMITATIONS ......................................................................... 30 2.3 AVAILABLE DATA FOR CONSTRUCTION .............................................................. 31 2.4 PROGRESSION TO CONSTRUCTED FEA MODEL ................................................... 32 CHAPTER 3: COLLECTION OF EXPERIMENTAL DATA ............................... 38 3.1 EXPERIMENT GOALS ........................................................................................... 38 3.2 EXPERIMENTAL SETUP ........................................................................................ 39 3.3 DATA ACQUISITION ............................................................................................. 40 3.4 TEST TRACK RESULTS .......................................................................................... 44 3.5 SAND BOX RESULTS ...................................................................................... 47 3.6 CONCLUSION FROM EXPERIMENTS ...................................................................... 50 CHAPTER 4: TIRE VALIDATION AND PARAMETER-TUNING OPTIMIZATION METHODOLOGY ........................................................................... 51 4.1 AVAILABLE DATA FOR PARAMETER-TUNING ...................................................... 51 4.2 SELECTION OF OPTIMIZATION ALGORITHM ......................................................... 52 4.3 COMBINED EXPERIMENTS PARAMETER-TUNING PROCEDURE ............................. 56 4.4 RESULTS OF PARAMETER-TUNING OPTIMIZATION .............................................. 60 CHAPTER 5: POPULATION OF THE IN-PLANE RIGID RING TIRE MODEL PARAMETERS ............................................................................................... 63 5.1 DESIRED IN-PLANE RIGID RING PARAMETERS .................................................... 63 5.2 STATIC FOOTPRINT LENGTH AND WIDTH (A, W) ................................................. 64 iv 5.3 TOTAL STATIC VERTICAL STIFFNESS (KSV) .......................................................... 67 5.4 TOTAL DYNAMIC VERTICAL STIFFNESS (KDV) ..................................................... 69 5.5 TOTAL VERTICAL DAMPING CONSTANT (CTOT) ................................................... 74 5.6 ROTATIONAL STIFFNESS AND DAMPING CONSTANT OF THE SIDEWALL (KBƟ, CBƟ) ........................................................................................................................ 77 5.7 LONGITUDINAL TREAD AND TIRE STIFFNESS (KCX, KK) ......................................... 81 CHAPTER 6: POPULATION OF THE OUT-OF-PLANE RIGID RING MODEL PARAMETERS .................................................................................... 84 6.1 DESIRED OUT-OF-PLANE RIGID RING PARAMETERS ......................................... 84 6.2 TRANSLATIONAL STIFFNESS AND DAMPING CONSTANT OF THE SIDEWALL (KBY, CBY) ....................................................................................................... 85 6.3 ROTATIONAL STIFFNESS AND DAMPING CONSTANT OF THE SIDEWALL (KBƔ, CBƔ) ........................................................................................................................ 88 6.4 LATERAL TIRE STIFFNESS AND DAMPING CONSTANT (KL, CL) ............................ 92 6.5 CORNERING STIFFNESS (KF) ................................................................................. 95 6.6 RELAXATION LENGTH (Σ) .................................................................................... 98 6.7 SELF-ALIGNING TORQUE STIFFNESS (KM) ............................................................ 99 CHAPTER 7: CONCLUSIONS AND FUTURE WORK ...................................... 101 7.1 GENERAL CONCLUSIONS ................................................................................... 101 7.2 CONSIDERATIONS FOR FUTURE WORK .............................................................. 103 REFERENCES ............................................................................................................... 106 v LIST OF FIGURES Figure 1-1 A FEA Dual Tire Model (Left) and a FEA Wide Base Tire Model (Right) [3]3 Figure 1-2 Anatomy of a Radial Bridgestone Aircraft Pneumatic Tire [35] ...................... 7 Figure 1-3 Comparison of Bias-Ply (Left) and Radial-Ply Pneumatic Tires (Right) [4] .... 9 Figure 1-4 SAE Tire Axis, Forces and Moments [4] ........................................................ 11 Figure 1-5 General Relationship of Tractive Force and Longitudinal Slip Percentage [4] ............................................................................................................................................ 13 Figure 1-6 Behavior of a Tire Subjected to a Cornering Maneuver (Top View Shown Left and Front View Shown Right) [4].....................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages123 Page
-
File Size-