Monosaccharide Disaccharide Oligosaccharide Polysaccharide Monosaccharide

Monosaccharide Disaccharide Oligosaccharide Polysaccharide Monosaccharide

Carbohydrates Classification of Carbohydrates monosaccharide disaccharide oligosaccharide polysaccharide Monosaccharide is not cleaved to a simpler carbohydrate on hydrolysis glucose, for example, is a monosaccharide Disaccharide is cleaved to two monosaccharides on hydrolysis these two monosaccharides may be the same or different C12H22O11 + H2O C6H12O6 + C6H12O6 glucose sucrose (a monosaccharide) fructose (a disaccharide) (a monosaccharide) Higher Saccharides oligosaccharide: gives two or more monosaccharide units on hydrolysis is homogeneous—all molecules of a particular oligosaccharide are the same, including chain length polysaccharide: yields "many" monosaccharide units on hydrolysis mixtures of the same polysaccharide differing only in chain length Some Classes of Carbohydrates No. of carbons Aldose Ketose 4 Aldotetrose Ketotetrose 5 Aldopentose Ketopentose 6 Aldohexose Ketopentose 7 Aldoheptose Ketoheptose 8 Aldooctose Ketooctose Fischer Projections and D-L Notation Fischer Projections Fischer Projections Fischer Projections of Enantiomers Enantiomers of Glyceraldehyde CH O CH O H OH HO H D L CH2OH CH2OH (+)-Glyceraldehyde (–)-Glyceraldehyde The Aldotetroses An Aldotetrose 1 CH O 2 H OH 3 H OH D 4 CH2OH stereochemistry assigned on basis of whether configuration of highest-numbered stereogenic center is analogous to D or L-glyceraldehyde An Aldotetrose 1 CH O 2 H OH 3 H OH 4 CH2OH D-Erythrose The Four Aldotetroses CH O CH O H OH HO H D-Erythrose and L-erythrose are H OH HO H enantiomers CH2OH CH2OH D-Erythrose L-Erythrose The Four Aldotetroses CH O CH O D-Erythrose and H OH HO H D-threose are diastereomers H OH H OH CH2OH CH2OH D-Erythrose D-Threose The Four Aldotetroses CH O CH O L-Erythrose and HO H HO H D-threose are diastereomers HO H H OH CH2OH CH2OH L-Erythrose D-Threose The Four Aldotetroses CH O CH O D-Threose and H H OH L-threose are HO enantiomers H OH HO H CH2OH CH2OH D-Threose L-Threose The Four Aldotetroses CH O CH O CH O CH O H OH HO H HO H H OH H OH HO H H OHHO H CH2OH CH2OH CH2OH CH2OH D-Erythrose L-Erythrose D-Threose L-Threose Aldopentoses and Aldohexoses The Aldopentoses There are 8 aldopentoses. Four belong to the D-series; four belong to the L-series. Their names are ribose, arabinose, xylose, and lyxose. The Four D-Aldopentoses CH O CH O CH O CH O H OH HO H H OH HO H H OH H OH HO H HO H H OH H OH H OH H OH CH2OH CH2OH CH2OH CH2OH D-Ribose D-Arabinose D-Xylose D-Lyxose Aldohexoses There are 16 aldopentoses. 8 belong to the D-series; 8 belong to the L- series. A Mnemonic for Carbohydrate Configurations The Eight D-Aldohexoses CH O H OH CH2OH The Eight D-Aldohexoses All CH O Altruists Gladly Make Gum In H OH Gallon CH2OH Tanks The Eight D-Aldohexoses All Allose CH O Altruists Altrose Gladly Glucose Make Mannose Gum Gulose In Idose H OH Gallon Galactose CH2OH Tanks Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose H OH Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose HO H Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose H OH Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose HO H Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose H OH Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose H OH Mannose H OH Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose HO H Mannose H OH Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose HO H Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose H OH Mannose HO H Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose HO H Mannose HO H Gulose H OH Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose H OH Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose H OH Mannose H OH Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose HO H Mannose H OH Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose Mannose HO H Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose H OH Mannose HO H Gulose HO H Idose H OH Galactose CH2OH Talose The Eight D-Aldohexoses Allose CH O Altrose Glucose HO H Mannose HO H Gulose HO H Idose H OH Galactose CH2OH Talose L-Aldohexoses There are 8 CH O CH O aldohexoses of the L-series. H OH HO H They have the HO H H OH same name as H OH HO H their mirror image except the prefix is H OH HO H L- rather than D-. CH2OH CH2OH D-(+)-Glucose L-(–)-Glucose Cyclic Forms of Carbohydrates: Furanose Forms R R •• •• • C O• + R"OH R"O C O H •• •• •• R' R' Product is a hemiacetal. Cyclic Hemiacetals R R OH C O C OH O Aldehydes and ketones that contain an OH group elsewhere in the molecule can undergo intramolecular hemiacetal formation. The equilibrium favors the cyclic hemiacetal if the ring is 5- or 6-membered. Carbohydrates Form Cyclic Hemiacetals 1 CH O 2 OH O 4 1 3 3 2 H 4 CH2OH equilibrium lies far to the right cyclic hemiacetals that have 5-membered rings are called furanose forms D-Erythrose 1 CH O 2 H H OH H H OH O 4 1 3 H OH H H 3 2 4 OH OH CH2OH stereochemistry is maintained during cyclic hemiacetal formation D-Erythrose 1 2 4 1 turn 90° 3 3 2 4 D-Erythrose move O into 1 position by rotating 4 about bond 2 between carbon-3 3 and carbon-4 D-Erythrose 1 4 1 4 3 2 3 2 D-Erythrose 1 close ring by 4 hemiacetal formation 3 2 between OH at C-4 and carbonyl group D-Erythrose 1 1 4 4 3 2 3 2 D-Erythrose anomeric carbon 1 CH O 2 H H OH H H OH O 4 1 3 H OH H H 3 2 4 OH OH CH2OH stereochemistry is variable at anomeric carbon; two diastereomers are formed D-Erythrose H H H H H H H OH O O 4 1 4 1 OH H H 3 2 H 3 2 OH OH OH OH α-D-Erythrofuranose β-D-Erythrofuranose D-Ribose 1 CH O 2 H OH H 3 OH H 4 OH 5 CH2OH furanose ring formation involves OH group at C-4 D-Ribose 1 CH O 5 2 CH OH H OH H 2 1 3 H OH 4 H H CH O 4 H OH HO 3 2 OH OH 5 CH2OH need C(3)-C(4) bond rotation to put OH in proper orientation to close 5-membered ring D-Ribose 5 5 HOCH2 OH H CH OH 1 2 1 4 H H CH O 4 H H CH O H 3 2 HO 3 2 OH OH OH OH D-Ribose 5 5 HOCH HOCH2 OH 2 1 OH H H 4 H H CH O O 4 1 H H 3 2 H 3 2 OH OH OH OH β-D-Ribofuranose CH2OH group becomes a substituent on ring Cyclic Forms of Carbohydrates: Pyranose Forms Carbohydrates Form Cyclic Hemiacetals 1 CH O 2 5 O OH 3 4 1 4 3 2 H 5 CH2OH cyclic hemiacetals that have 6-membered rings are called pyranose forms D-Ribose 1 CH O 5 H CH OH 2 2 H OH 1 4 H H CH O H 3 OH H 4 OH HO 3 2 OH OH 5 CH2OH pyranose ring formation involves OH group at C-5 D-Ribose H 5 5 H CH OH H O OH 2 1 H 4 H H CH O 4 H H 1 HO 3 2 H HO 3 2 OH OH OH OH β-D-Ribopyranose D-Ribose H H H 5 O OH H 5 O H H H 4 H H 1 4 H H 1 HO 3 2 H HO 3 2 OH OH OH OH OH β-D-Ribopyranose α-D-Ribopyranose D-Glucose 1 CH O 6 2 H OH 5 CH2OH H H HO 3 H 4 OH CH O OH H H 4 OH 1 5 3 2 H OH HO H OH 6 CH2OH pyranose ring formation involves OH group at C-5 D-Glucose 6 6 HOCH2 H OH 5 CH2OH H 5 H 4 H CH O 4 OH CH O OH H 1 OH H 1 HO 3 2 HO 3 2 H OH H OH need C(4)-C(5) bond rotation to put OH in proper orientation to close 6-membered ring D-Glucose 6 6 HOCH2 HOCH2 OH 5 H 5 H O OH H 4 H CH O 4 OH H 1 OH H 1 HO 3 2 H HO 3 2 H OH H OH β-D-Glucopyranose D-Glucose 6 6 HOCH2 HOCH2 H 5 O H H 5 O OH H H 4 OH H 1 4 OH H 1 HO 3 2 OH HO 3 2 H H OH H OH α-D-Glucopyranose β-D-Glucopyranose D-Glucose 6 HOCH2 H 5 O OH H 4 OH H 1 HO 3 2 H H OH β-D-Glucopyranose pyranose forms of carbohydrates adopt chair conformations D-Glucose 6 6 H HOCH2 HOCH2 H 5 4 OH 5 O H O HO H 4 OH H 1 HO 2 OH 3 1 HO 3 2 H H OH H H H OH β-D-Glucopyranose all substituents are equatorial in β-D-glucopyranose D-Glucose H H HOCH2 H HOCH2 H O O HO HO HO OH HO H 1 1 H OH H OH H H H OH β-D-Glucopyranose α-D-Glucopyranose OH group at anomeric carbon is axial in α-D-glucopyranose D-Ribose CH O H OH H OH H OH CH2OH Less than 1% of the open-chain form of D-ribose is present at equilibrium in aqueous solution.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    84 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us