First Fundamental Form

First Fundamental Form

Spring 2015 CSCI 599: Digital Geometry Processing 3.2 Classic Differential Geometry 2 Hao Li http://cs599.hao-li.com 1 Outline • Parametric Curves • Parametric Surfaces 2 Surfaces What characterizes shape?! • shape does not depend on Euclidean motions • metric and curvatures • smooth continuous notions to discrete notions 3 Metric on Surfaces Measure Stuff! • angle, length, area • requires an inner product • we have: • Euclidean inner product in domain • we want to turn this into: • inner product on surface 4 Parametric Surfaces Continuous surface x(u, v) x(u, v)= y(u, v) z(u, v) ⇥ n ⇤ ⌅ Normal vector xu xv p x x n = u × v x x ⇥ u × v⇥ Assume regular parameterization x x = 0 normal exists u × v ⇥ 5 Angles on Surface Curve [ u ( t ) ,v ( t )] in uv-plane defines curve on the surface x(u, v) c(t)=x(u(t) ,v(t)) Two curves c 1 and c 2 intersecting at!p • angle of intersection? n • two tangents t and t 1 2 xu xv p ! ti = αixu + ⇥ixv c2 • compute inner product c1 tT t = cos θ t t 1 2 1 2 6 Angles on Surface Curve [ u ( t ) ,v ( t )] in uv-plane defines curve on the surface x(u, v) c(t)=x(u(t) ,v(t)) Two curves c 1 and c 2 intersecting at p T T t1 t2 =(α1xu + ⇥1xv) (α2xu + ⇥2xv) T T T = α1α2xu xu +(α1⇥2 + α2⇥1) xu xv + ⇥1⇥2xv xv T T xu xu xu xv α2 =(α1, ⇥1) T T xu xv xv xv ⇥2 ⇥ ⇥ 7 First Fundamental Form First fundamental form EF xT x xT x I = := u u u v FG xT x xT x ⇥ u v v v⇥ Defines inner product on tangent space T α α α α 1 , 2 := 1 I 2 ⇥ ⇥ ⇥ ⇥ ⇤ 1⇥ 2⇥⌅ 1⇥ 2⇥ 8 First Fundamental Form First fundamental form I allows to measure! (w.r.t. surface metric) Angles t>t = (↵ , β ), (↵ , β ) 1 2 h 1 1 2 2 i Length ds2 = (du, dv), (du, dv) squared ! ⇥ infinitesimal ! = Edu2 +2F dudv + Gdv2 length Area dA = x x du dv ⌅ u ⇤ v⌅ T T T 2 = x xu x xv (x xv) du dv infinitesimal ! u · v − u Area ⇥ = EG F 2du dv cross product →− determinant with unit vectors → area 9 Sphere Example Spherical parameterization cos u sin v x(u, v)= sin u sin v , (u, v) [0, 2π) [0, π) cos v ⇥ ⇥ × Tangent vectors⇤ ⌅ sin u sin v cos u cos v − x (u, v)= cos u sin v x (u, v)= sin u cos v u v ⇥ 0 ⇥ sin v − ⇤ ⌅ ⇤ ⌅ First fundamental Form sin2 v 0 I = 01 ⇥ 10 Sphere Example Length of equator x(t, ⇡/2) 2π 2π 2 2 1ds = E (ut) +2Futvt + G (vt) dt 0 0 ⇥ 2π = sin v dt 0 =2π sin v =2π 11 Sphere Example Area of a sphere π 2π π 2π 1dA = EG F 2 du dv 0 0 0 0 − ⇥ π 2π = sin v du dv 0 0 =4π 12 Normal Curvature Tangent vector t … n xu xv p t xu xv t = cos φ + sin φ ∥xu∥ ∥xv∥ unit vector 13 Normal Curvature … defines intersection plane, yielding curve c(t) normal curve n t c(t) p xu xv t = cos φ + sin φ ∥xu∥ ∥xv∥ 14 Geometry of the Normal Gauss map! • normal at point ! ! ! • consider curve in surface again • study its curvature at p • normal “tilts” along curve 15 Normal Curvature Normal curvature n ( t ) is defined as curvature of the normal curve c ( t ) at point p(t)=x(u, v) With second fundamental form ef xT nxT n II = := uu uv fg xT nxT n ⇥ ⇤ uv vv ⌅ normal curvature can be computed as T 2 2 ¯t II¯t ea +2fab + gb t = axu + bxv κ (¯t)= = n ¯tT I ¯t Ea2 +2F ab + Gb2 ¯t =(a, b) 16 Surface Curvature(s) Principal curvatures! • Maximum curvature κ1 = max κn(φ) φ • Minimum curvature κ2 = min κn(φ) φ 2 2 • Euler theorem κn(⇥)=κ1 cos ⇥ + κ2 sin ⇥ • Corresponding principal directions e 1 , e 2 are orthogonal 17 Surface Curvature(s) Principal curvatures! • Maximum curvature κ1 = max κn(φ) φ • Minimum curvature κ2 = min κn(φ) φ 2 2 • Euler theorem κn(⇥)=κ1 cos ⇥ + κ2 sin ⇥ • Corresponding principal directions e 1 , e 2 are orthogonal Special curvatures! κ1 + κ2 • Mean curvature H = extrinsic 2 • Gaussian curvature K = κ1 · κ2 intrinsic (only first FF) 18 Invariants Gaussian and mean curvature! • determinant and trace only ! ! ! • eigenvalues and orthovectors 19 Mean Curvature Integral representations 20 Curvature of Surfaces κ + κ Mean curvature! H = 1 2 2 • H =0 everywhere minimal surface ! soap film 21 Curvature of Surfaces κ + κ Mean curvature! H = 1 2 2 • H =0 everywhere minimal surface ! Green Void, Sydney Architects: Lava 22 Curvature of Surfaces Gaussian curvature! K = κ1 · κ2 • K =0 everywhere developable surface ! surface that can be flattened to a plane without distortion (stretching or compression) Disney, Concert Hall, L.A. Timber Fabric Architects: Gehry Partners IBOIS, EPFL 23 Shape Operator Derivative of Gauss map! • second fundamental form ! ! ! • local coordinates 24 Intrinsic Geometry Properties of the surface that only depend on the! first fundamental form! • length • angles • Gaussian curvature (Theorema Egregium) remarkable theorem (Gauss) 6πr − 3C(r) K = lim r→0 πr3 Gaussian curvature of a surface is invariant under local isometry 25 Classification Point x on the surface is called! • elliptic, if K>0 • hyperbolic, if K<0 Gaussian curvature K • parabolic, if K =0 • umbilic, if κ1 = κ2 or isotropic 26 Classification Point x on the surface is called 27 Gauss-Bonnet Theorem For any closed manifold surface with Euler characteristic χ =2 2g − K =2⇥ Z K()=K()=K()=4π Z Z Z 28 Gauss-Bonnet Theorem Sphere κ1 = κ2 =1/r 2 K = κ1κ2 =1/r 1 K =4πr2 =4π · r2 Z when sphere is deformed, new positive and negative curvature cancel out 29 Differential Operators Gradient! @f @f ! f := ,..., r @x @x ✓ 1 n ◆ ! • points in the direction of the steepest ascend 30 Differential Operators Divergence! ! @F @F divF = F := 1 + ...+ n ! r· @x1 @xn • volume density of outward flux of vector field • magnitude of source or sink at given point • Example: incompressible fluid • velocity field is divergence-free 31 Differential Operators Divergence @F @F divF = F := 1 + ...+ n r· @x1 @xn high divergence low divergence 32 Laplace Operator gradient 2nd partial Laplace operator derivatives operator ∂2f ∆ = div∇ = f f ! 2 i ∂xi Cartesian coordinates function in divergence Euclidean space operator 33 Laplace-Beltrami Operator Extension of Laplace fo functions on manifolds Laplace- gradient Beltrami operator …of the surface ∆S f = divS ∇S f function on divergence manifold S operator Laplace on the surface 34 Laplace-Beltrami Operator Laplace- gradient Beltrami operator mean curvature ∆S x = divS ∇S x = −2Hn surface function on divergence normal manifold S operator 35 Literature • M. Do Carmo: Differential Geometry of Curves and Surfaces, Prentice Hall, 1976 • A. Pressley: Elementary Differential Geometry, Springer, 2010 • G. Farin: Curves and Surfaces for CAGD, Morgan Kaufmann, 2001 • W. Boehm, H. Prautzsch: Geometric Concepts for Geometric Design, AK Peters 1994 • H. Prautzsch, W. Boehm, M. Paluszny: Bézier and B-Spline Techniques, Springer 2002 • ddg.cs.columbia.edu • http://graphics.stanford.edu/courses/cs468-13-spring/schedule.html 36 Next Time Discrete Differential Geometry 37 http://cs599.hao-li.com Thanks! 38.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    38 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us