
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2005 Electrodeposited nanoscale multilayers of Invar with copper Diwakar Suryanarayana Iyer Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Mechanical Engineering Commons Recommended Citation Iyer, Diwakar Suryanarayana, "Electrodeposited nanoscale multilayers of Invar with copper" (2005). LSU Master's Theses. 2143. https://digitalcommons.lsu.edu/gradschool_theses/2143 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. ELECTRODEPOSITED NANOSCALE MULTILAYERS OF INVAR WITH COPPER A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering in The Department of Mechanical Engineering by Diwakar Suryanarayana Iyer B.S., Bangalore University, 2001 December 2005 To my parents Sudha and Suryanarayana Iyer and my sister Deepa Iyer ii ACKNOWLEDGEMENTS I am fully indebted to the support given by my parents in making me achieve my goal in completing my higher education in United States. They are the living personification of GOD to me. I am very grateful to my mother for her moral support and to my father who always encouraged me to face challenges and difficulties in life in a positive way and help others. I express my sincere appreciation to my guru, Dr. M. C. Murphy, for his great support and guidance throughout the research project. He led me in the right direction in accomplishing the objectives of this thesis. I am very grateful to Dr. E. J. Podlaha for her immense patience towards explaining new concepts and advice in my work. I thank Dr. Jost Göttert and Dr. W. J. Meng for their guidance in the project. I am thankful to all the CAMD staff in helping me in my research. I would acknowledge Mary Kosarzycki, Cindy Henk, Rakesh Behera, Pankaj Gupta and Varshini Singh for their invaluable support in successful to my completion of this thesis. It is my pleasure to thank all my lab-mates (former & present) including Adam, Pin-Chuan, Kevin, Chris, Chetan, T.Park, Byonhee You, Namwon Kim, Taehyun Lee, Dr. Park, Dinakar, Guda, and Praveen who created a lively atmosphere at work. I am thankful to my dearest friend, Adam; in making the lab a fun place to work with. I admire all my LSU friends, with whom I had great fun. I would like to acknowledge one of my close friends, Sudheer Rani, for his constant encouragement and positive attitude. I am grateful to National Science Foundation for funding the project. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS…..….………………………………………....... iii ABSTRACT………………………………………………….………….…… viii CHAPTER 1. INTRODUCTION…………………………………………....... 1 1.1 Potential Applications of Low CTE Materials……………………….1 1.1.1 Actuation and Sensing……………………………………………..1 1.1.1.1 Thermomechanical Stability……….………………………. 1 1.1.1.2 Bimorphs…………………………………………………………2 1.1.2 Packaging………………………………………………………….2 1.1.3 Mold Inserts………………………………………………………..3 1.2 Low CTE Materials…………………………………………………….3 1.2.1 Bulk Materials…………………………………………………….. 4 1.2.1.1 Glass……………………………………………………………4 1.2.1.2 Zerodur…………………………………………………………4 1.2.1.3 Invar…………………………………………………………….5 1.2.2 Microscale………………………………………………………….5 1.2.2.1 Electrodeposited Invar………………………………………..5 1.2.2.1.1 Composition Controlled…………………………………..5 1.2.2.1.2 Materials Properties……………………………………….6 1.3 Work on Multilayer Invar…………………………………….............6 1.3.1 Background………………………………………………………..6 1.3.2 Investigation…………………………………………………….....7 1.3.2.1 Motivation………………………………………………….......7 1.3.2.2 Electrolyte Characterization………………………………….7 1.3.2.3 CTE Testing……………………………………………………7 1.3.2.4 Material Characterization………………………………….....8 1.3.2.4.1 Structural Imaging…………………………………………8 1.3.2.4.2 Microhardness………………………………………….....8 1.4 Thesis Outline…………………………………………………………9 CHAPTER 2. BACKGROUND………………………………………………… 11 2.1 Prior Work in Invar Electroplating………………………………….. 11 2.2 Invar Effect: Definition and Description…………………………… 13 2.2.1 Invar Anomaly……………………………………………………. 14 2.2.2 Negative Thermal Expansion Property of Invar…………….... 16 2.3 Electrodeposition of Multilayer Microstructures……………….….. 17 2.3.1 Single-bath Electrodeposition……………………………………19 2.3.2 Dual Bath Electrodeposition……………………………………..21 2.3.3 Pulse Plating……………………………………………………… 23 2.3.4 Properties of Electrodeposited Multilayer………………………24 2.3.4.1 Magnetic Properties…………………………………………..24 2.3.4.2 Mechanical Properties………………………………………..25 2.4 Multilayering Effect on Mechanical Properties……………………..26 CHAPTER 3. ELECTROCHEMICAL PROCESS DEVELOPMENT AND HULL-CELL EXPERIMENTS………………………………….. 28 iv 3.1 Introduction……………………………………………………………..28 3.1.1 Basic Concepts……………………………………………………28 3.1.2 Faraday’s Laws……………………………………………………30 3.1.3 Current Efficiency…………………………………………………31 3.1.4 Mass Transport Concepts………………………………………. 32 3.1.5 Electroplating Parameters in FeNiCu Bath…………………… 32 3.2 Configuring the FeNiCu Electrolyte…………………………………33 3.2.1 Hull Cell: Experimental Setup……………………………………33 3.2.1.1 Experimental Description…………………………………….36 3.2.1.2 Physical Appearance of the Plated Samples………………37 3.2.2 Composition Analysis……………………………………………. 38 3.2.3 Adjusting the pH of the Electrolyte……………………………….....39 3.3 Determination of the Invar Plating range….…………………….. 40 3.3.1 Cobalt Plating on Brass Rod……………………………………..40 3.3.1.1 Need for Cobalt Plating……………………………………… 40 3.3.1.2 Recipe for Cobalt Plating……………………………………..40 3.3.2 Hull Cell Experiments on Modified FeNiCu Solution…………..41 3.3.2.1 Comparing With the Hull Cell Model…………………………42 3.3.2.2 XRF Measurements…………………………………………..45 3.3.3 Calculation of Partial Current Densities…………………………45 3.4 Polarization and Electrochemical Impedance Spectroscopy….. 46 3.4.1 Basic Concepts…………………………………………………….46 3.4.2 Polarization Experiment Setup…………………………………..48 3.5 Results………………………………………………………………….50 3.5.1 % Weight Composition of Fe, Ni and Cu………………………..50 3.5.2 Polarization Curves…………………………………………….....52 3.6 Conclusions…………………………………………………………….56 CHAPTER 4. MICROFABRICATION OF MULTILAYER SAMPLES……………57 4.1 Introduction to LIGA…………………………………………………..57 4.2 X-ray Mask and Pattern Details……………………………………..59 4.2.1 Pattern Details…………………………………………………… 59 4.2.2 X-ray Mask Fabrication………………..……………………..... 59 4.3 Substrate Preparation……………………………………………….. 60 4.3.1 Pretreatment of Ceramic Substrates……………………………60 4.3.2 Seed Layer Deposition……………………………………………61 4.4 Application of Photo Resist……………………………………………61 4.4.1 Annealing of PMMA……………………………………………….62 4.4.2 PMMA Bonding…………………………………………………….62 4.5 Fly-cutting………………………………………………………………64 4.6 X-ray Exposure and Development…………………………………..65 4.6.1 X-ray Exposure……………………………………………………...65 4.6.2 PMMA Development………………………………………………67 4.7 Electroplating FeNi-Cu Multilayers in Recesses…………………..68 4.7.1 Electroplating Jig Design…………………………………………68 4.7.1.1 Experiments Without an Electroplating Jig………………. 68 4.7.1.2 Problems Encountered……………………………………….69 4.7.1.3 Electroplating Jig……………………………………………….70 v 4.7.2 Plating Apparatus with Parameters……………………………..71 4.7.3 Pulsing Scheme………………………………………………….. 72 4.8 Lapping of Ceramic Substrate……………………………………….74 4.9 Flood Exposure………………………………………………………. 76 4.10 Microfabrication Conclusions……………………………………….. 76 CHAPTER 5. CHARACTERIZATION OF MULTILAYER MICROPOSTS….....77 5.1 Characterization Methods and Rationale………………………..... 77 5.1.1 Scanning Electron Microscopy (SEM).………………………….77 5.1.2 Transmission Electron Microscopy (TEM)…………………….. 77 5.1.3 Electron Diffraction……………………………………………..... 78 5.1.4 Thermo mechanical Analysis (TMA).…………………………….78 5.1.5 Micro-hardness…………………………………………………….78 5.2 Specimen Cutting……………………………………………………..79 5.3 Structural Characterization…………………………………………..79 5.3.1 Scanning Electron Microscopy…………………………………..79 5.3.1.1 Micrometer-scale Plating…….………………………………….79 5.3.1.2 SEM Plating Preparation Steps…………………………….. 80 5.3.1.3 SEM Results……………………………………………… …..81 5.3.2 Transmission Electron Microscopy………………………………82 5.3.2.1 Sample Preparation……………………………………………82 5.3.2.1.1 Method 1: By Polishing……………………………………82 5.3.2.1.2 Method 2: Resin Embedding………………………….....83 5.3.2.2 TEM Results……………………………………………………84 5.3.2.2.1 As-deposited Multilayers…………………………………..84 5.3.2.2.2 Heat Treated Multilayers………………………………….86 5.4 Mechanical and Thermal Properties……………………………….. 88 5.4.1 Thermo Mechanical Analysis…………………………………….88 5.4.1.1 Sample Preparation…………………………………………..88 5.4.1.2 Stork Technimet Analysis…………………………………….89 5.4.1.2.1 Process Equipment……………………………………….89 5.4.1.2.2 Test Protocols…………………………………………… 89 5.4.1.2.2.1 Multi-post Analysis……………………………… 90 5.4.1.2.2.2 Single Post Analysis…………………………… 91 5.4.1.2.2.3 Multi-heat Analysis…………………………….. 92 5.4.1.2.3 Results………………………………………………….. 92 5.4.1.2.3.1 Multi-post……………………………………….. 92 5.4.1.2.3.2 Single Post………………………………………. 93 5.4.1.2.3.3 Multi-heat…………………………………………. 94 5.4.1.2.3.4 Multilayering Effect on CTE…………………… 97 5.4.2 Micro-hardness Characterization……………………………… 99 5.4.2.1 Sample Preparation………………………………………… 99 5.4.2.2 Testing Equipment…………………………………………. 99 5.4.2.3 Profilometric Results………………………………………… 100 5.4.2.4 Hardness Results……………………………………………
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages163 Page
-
File Size-