Dirac Equation Homework 4

Dirac Equation Homework 4

Phys624 Dirac Equation Homework 4 Homework 4 Solutions 4.1 - Weyl or Chiral representation for γ-matrices 4.1.1: Anti-commutation relations We can write out the γµ matrices as 0 σµ γµ = σ¯µ 0 where µ µ σ = (1; σ); σ¯ = (12; − σ) The anticommutator is 0 σµ 0 σν 0 σν 0 σµ fγµ; γνg = + σ¯µ 0 σ¯ν 0 σ¯ν 0 σ¯µ 0 σµσ¯ν 0 σνσ¯µ 0 = + 0σ ¯µσν 0σ ¯νσµ σµσ¯ν + σνσ¯µ 0 = 0σ ¯µσν +σ ¯νσµ Consider the upper-left component, σµσ¯ν + σνσ¯µ. For µ = ν = 0, 0 0 0 0 σ σ¯ + σ σ¯ = 2 × 12 For µ = 0 and ν 6= 0, σ0σ¯i + σiσ¯0 = 0 For µ 6= 0 and ν 6= 0, we get σiσ¯j + σjσ¯i = −σiσj − σjσi = −σi; σj = −2δij Putting all of these together, we get µ ν ν µ µν σ σ¯ + σ σ¯ = 2g × 12 In exactly the same way, µ ν ν µ µν σ¯ σ +σ ¯ σ = 2g × 12 so µ ν µν fγ ; γ g = 2g × 14 1 Phys624 Dirac Equation Homework 4 4.1.2: Boost and rotation generators We can write i i i Sµν = [γµ; γν] = (fγµ; γνg − 2γνγµ) = (gµν − γνγµ) (1) 4 4 2 And, 0 σν 0 σµ γνγµ = σ¯ν 0 σ¯µ 0 σνσ¯µ 0 = 0σ ¯νσµ i gµν − σνσ¯µ 0 Sµν = (2) 2 0 gµν − σ¯νσµ Then, i −σi 0 Ki = S0i = (3) 2 0 σi 1 J k = ijkSij (4) 2 1 i gij − σjσ¯i 0 = ijk (5) 2 2 0 gij − σ¯jσi i σjσi 0 = ijk (6) 4 0 σjσi i [σj; σi] 0 = ijk (7) 8 0 [σj; σi] i 2ijimσm 0 = ijk (8) 8 0 2ijimσm 1σk 0 = (9) 2 0 σk 2 Phys624 Dirac Equation Homework 4 4.2 - General representation of γ-matrices 4.2.1: Lorentz group algebra In order to have a compact notation, let us evaluate the following, [Sµν;Sρσ] (10) We look at this because the Lorentz generators are made out of Sµν,and their commutation will follow from the quantity above. We can write i i i Sµν = [γµ; γν] = (fγµ; γνg − 2γνγµ) = (gµν − γνγµ) (11) 4 4 2 Now, since gµν is implicitly multiplied with the identity spinor space, the commutator we are after is µν ρσ 1 µν ν µ ρσ σ ρ 1 σ ρ ν µ [S ;S ] = − 4 [g − γ γ ; g − γ γ ] = 4 [γ γ ; γ γ ] The strategy to evaluate this commutator is roughly as follows. We keep anti-commuting the γ-matrices in the first term, till we get the second term. Each anti-commutation gives us something in the form gµνγργσ. We collect all these terms in the end, and rewrite them in terms of Sµν. Carrying out the calculation, µν ρσ 1 σ ρ ν µ ν µ σ ρ [S ;S ] = 4 (γ γ γ γ − γ γ γ γ ) 1 σρ ρ σ ν µ ν µ σ ρ = 4 ((2g − γ γ )γ γ − γ γ γ γ ) 1 σρ ν µ ρ σ ν µ ν µ σ ρ = 4 (2g γ γ − γ γ γ γ − γ γ γ γ ) 1 σρ ν µ ρ σν ν σ µ ν µ σ ρ = 4 (2g γ γ − γ (2g − γ γ )γ − γ γ γ γ ) 1 σρ ν µ σν ρ µ ρ ν σ µ ν µ σ ρ = 4 (2g γ γ − 2g γ γ + γ γ γ γ − γ γ γ γ ) 1 σρ ν µ σν ρ µ ρ ν σµ µ σ ν µ σ ρ = 4 (2g γ γ − 2g γ γ + γ γ (2g − γ γ ) − γ γ γ γ ) 1 σρ ν µ σν ρ µ σµ ρ ν ρ ν µ σ ν µ σ ρ = 4 (2g γ γ − 2g γ γ + 2g γ γ − γ γ γ γ − γ γ γ γ ) 1 σρ ν µ σν ρ µ σµ ρ ν ρν ν ρ µ σ ν µ σ ρ = 4 (2g γ γ − 2g γ γ + 2g γ γ − (2g − γ γ )γ γ − γ γ γ γ ) 1 σρ ν µ σν ρ µ σµ ρ ν ρν µ σ ν ρ µ σ ν µ σ ρ = 4 (2g γ γ − 2g γ γ + 2g γ γ − 2g γ γ + γ γ γ γ − γ γ γ γ ) 1 σρ ν µ σν ρ µ σµ ρ ν ρν µ σ = 4 (2g γ γ − 2g γ γ + 2g γ γ − 2g γ γ + γν(2gρµ − γµγρ)γσ − γνγµγσγρ) 1 σρ ν µ σν ρ µ σµ ρ ν ρν µ σ ρµ ν σ = 4 (2g γ γ − 2g γ γ + 2g γ γ − 2g γ γ + 2g γ γ − γνγµγργσ − γνγµγσγρ) 1 σρ ν µ σν ρ µ σµ ρ ν ρν µ σ ρµ ν σ = 4 (2g γ γ − 2g γ γ + 2g γ γ − 2g γ γ + 2g γ γ − γνγµ(2gρσ − γσγρ) − γνγµγσγρ) 1 σρ ν µ σν ρ µ σµ ρ ν ρν µ σ ρµ ν σ ρσ ν µ = 4 (2g γ γ − 2g γ γ + 2g γ γ − 2g γ γ + 2g γ γ − 2g γ γ + γνγµγσγρ − γνγµγσγρ) 1 νσ ρ µ µσ ρ ν νρ µ σ µρ ν σ = − 2 (g γ γ − g γ γ + g γ γ − g γ γ ) Now we can add gνσgρµ − gµρgσν and gνρgσµ − gµσgνρ: µν ρσ i µρ ρ µ νσ i νρ ρ ν µσ [S ;S ] = i[− 2 (g − γ γ )g + 2 (g − γ γ )g i σµ µ σ νρ i σν ν σ µρ − 2 (g − γ γ )g + 2 (g − γ γ )g ] 3 Phys624 Dirac Equation Homework 4 Using the above and the fact that Sµν is antisymmetric, we get [Sµν;Sρσ] = i(gνρSµσ − gµρSνσ − gνσSµρ + gµσSνρ) In principle, we are done already, because one can show that this is the same commutation relation that the J µν matrices (defined in Problem 4.2.2) satisfy, and hence Sµν satisfies the same commutation relation as Lorentz transformation generator. However, let us calculate the commutators explicitly in terms of J i;Ki etc. 1 [J i;J j] = mnipqj[Smn;Spq] (12) 4 i = mnipqj(gnpSmq − gmpSnq − gnqSmp + gmqSnp) (13) 4 = −imnipqjgmpSnq (14) = imnimqjSnq (15) nq = i (δnqδij − δjnδiq) S (16) nq = −i δjnδiq S (17) i = − (δ δ − δ δ )Snq (18) 2 jn iq jq in i = ijknqkSnq (19) 2 = iijkJ k (20) where we have used the -tensor contraction identity ijk imn = δjmδkn − δjnδkm (21) and the anti-symmetry of Sµν in the above derivation. The other two commutation relations follow from similar manipulations. [Ki;Kj] = [S0i;S0j] = −iSij = −iijkJ k (22) 1 [Ki;J j] = mnj[S0i;Smn] (23) 2 i = mnj(gimS0n − ginS0m) (24) 2 = −iinjS0n (25) = iijkJ k (26) 4 Phys624 Dirac Equation Homework 4 4.2.2: Meaning of µ index on γµ We have the commutator i [γµ;Sρσ] = [γµ; gρσ − γσγρ] 2 i = − [γµ; γσγρ] 2 i = − γσ[γµ; γρ] + [γµ; γσ]γρ 2 = −ifγσ(gµρ − γργµ) + (gµσ − γσγµ)γρg = −igµργσ − igµσγρ + iγσγργµ + iγσγµγρ = −igµργσ − igµσγρ + 2igµργσ − iγσγµγρ + iγσγµγρ = igµργσ − igµσγρ We can write the right-hand side down in the same form by substituting the explicit repre- ρσ µ sentation of (J )ν : ρσ µ ν µα ρ σ σ ρ ν (J )ν γ = ig (δαδν − δαδν )γ µα ρ σ ν µα σ ρ ν = ig δαδν γ − ig δαδν γ = igµργσ − igµσγρ Thus, µ ρσ ρσ µ ν [γ ;S ] = (J )ν γ 4.2.3: Chirality projection operator Following the steps in Problem 4.2.1, we can write, i Sµν = (gµν − γµγν) (27) 2 Note that γ5 anti-commutes with all the γµ. fγ5; γµg = i(γ0γ1γ2γ3γµ + γµγ0γ1γ2γ3) (28) For a given value of µ, we can anti-commute the γµ in each term all the way to the corre- sponding γ in γ5. In each anti-commutation, we pick up a negative sign. There are even anti-commutations in one term, and odd in the other, and thus they always cancel. Let us do the steps for µ = 1. fγ5; γ1g = i(γ0γ1γ2γ3γ1 + γ1γ0γ1γ2γ3) (29) = i((−1)2γ0γ1γ1γ2γ3 + (−1)γ0γ1γ1γ2γ3) (30) = 0 (31) 5 Phys624 Dirac Equation Homework 4 Therefore, i [γ5;Sµν] = [γ5; (gµν − γµγν)] (32) 2 i = − [γ5; γµγν] (33) 2 i = − [γ5; γµ]γν + γµ[γ5; γν] (34) 2 i = − [γ5; γµ]γν + γµ[γ5; γν] (35) 2 = −i(γ5γµγν + γµγ5γν) (36) = −i(γ5γµγν − γ5γµγν) = 0 (37) 6 Phys624 Dirac Equation Homework 4 4.3 - Lorentz Transformations 4.3.1: Modified spinor (Ex 4.6 Lahiri and Pal) Please ignore the text above the line in the scan. 7 Phys624 Dirac Equation Homework 4 8 Phys624 Dirac Equation Homework 4 4.3.2: Bilinears Part (i) Ex 4.5 Lahiri and Pal 9 Phys624 Dirac Equation Homework 4 Part (ii) We have that y y y ! Λ 1 2 In infinitesimal form, this reads y y i µν y ! 1 + 2 !µν(S ) If we define ¯ := yγ0 we have the transformation ¯ y i µν y 0 ! 1 + 2 !µν(S ) γ Since Sij is given by 1 σk 0 Sij = ijk 2 0 σk we have (Sij)y = (Sij). Also, 1 0 1σk 0 σk 0 0 1 [γ0;Sij] = ijk − 2 1 0 0 σk 0 σk 1 0 1 0 σk 0 σk = ijk − 2 σk 0 σk 0 = 0 In terms with µ or ν zero, we have i σi 0 S0i = − ; 2 0 −σi i y i σ 0 S0i = = −S0i 2 0 −σi Now consider the anti-commutator, i 0 1σi 0 σi 0 0 1 γ0;S0i = − + 2 1 0 0 −σi 0 −σi 1 0 i 0 −σi 0 σi = + 2 σi 0 −σi 0 = 0 Therefore, (Sµν)yγ0 = γ0(Sµν) 10 Phys624 Dirac Equation Homework 4 and the transformation for ¯ becomes y 0 y 0 i µν γ ! γ 1 + 2 !µν(S ) For finite rotations, this is just ¯ ¯ −1 ! Λ 1 2 From this relationship, we immediately see that ¯ ¯ −1 ! Λ 1 Λ 1 2 2 so ¯ ! ¯ that is, ¯ transforms like a Lorentz scalar.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    15 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us