An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions

An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions

An Introduction to Quantum Field Theory (Peskin and Schroeder) Solutions Andrzej Pokraka December 12, 2017 Contents 1TheDiracEquation 1 1.1 Lorentz group ! ................................................... 1 1.2 Gordon Identity ! .................................................. 7 1.3 Spinor products ! .................................................. 7 1.4 Majorana fermions ! ................................................ 11 1.5 Supersymmetry .................................................... 21 1.6 Fierz transformations ! ............................................... 22 1.7 Discrete symmetries of the Dirac field ! ..................................... 27 1.8 Bound states ..................................................... 32 1TheDiracEquation 1.1 Lorentz group ! The Lorentz commutation relations are [J µν ,Jρσ ]=i (gνρJ µσ gµρJ νσ gνσJ µρ + gµσJ νρ) . − − (a) Define the generators of rotations and boots as 1 Li = ϵijkJ jk and Ki = J 0i, 2 where ijk is a permutation of (123).AninfinitesimalLorentztransformationcanthenbewritten Φ (1 iθ L iβ K)Φ. → − · − · Write the commutation relations of these vector operators explicitly. Show that the combinations 1 1 J+ = (L + iK) and J = (L iK) 2 − 2 − 1 commute with one another and separately satisfy the combination relation of angular momentum. Proof: The L operator commutation relations are Li,Lj = LiLj Lj Li − 1 ! " = ϵiklJ kl,ϵjmnJ mn 4 1 ! " = ϵiklϵjmn J kl,Jmn 4 i ! " = ϵiklϵjmn glmJ kn gkmJ ln glnJ km + gknJ lm 4 − − i ! " = ϵiklϵjmnglmJ kn ϵiklϵjmngkmJ ln ϵiklϵjmnglnJ km + ϵiklϵjmngknJ lm 4 − − for! the second and last term k l " i ↔ = ϵiklϵjmnglmJ kn ϵilkϵjmnglmJ kn ϵiklϵjmnglnJ km + ϵilkϵjmnglnJ km 4 − − i ! " = ϵiklϵjmnglmJ kn + ϵiklϵjmnglmJ kn ϵiklϵjmnglnJ km ϵiklϵjmnglnJ km 4 − − for! the third and last term m n " i ↔ = ϵiklϵjmnglmJ kn + ϵiklϵjmnglmJ kn ϵiklϵjnmglmJ kn ϵiklϵjnmglmJ kn 4 − − i ! " = ϵiklϵjmnglmJ kn + ϵiklϵjmnglmJ kn + ϵiklϵjmnglmJ kn + ϵiklϵjmnglmJ kn 4 = iϵikl! ϵjmnglmJ kn " = iϵiklϵjmn δlm J kn − = iϵiklϵjlnJ kn − # $ = iϵiklϵjnlJ kn = i δij δkn δinδkj J kn − = i δij J kk J ji # − $ ij = iJ# $ = iϵijkLk where J kk = i δk δk δkδk αβ α β − β α =0# $ and 1 ϵijkLk = ϵijkϵklmJ lm 2 1 = ϵkij ϵklmJ lm 2 1 = δilδjm δimδjl J lm 2 − 1 # $ = J ij J ji 2 − = J ij#. $ 2 The K commutation relations are Ki,Kj = KiKj Kj Ki − = J 0iJ 0j J 0j J 0i ! " − = i gi0J 0j g00J ij gij J 00 + g0j J i0 . − − This is simplified using properties of the metric gi0#=0, g00 = 1, gij = 1 and the$ generators J 00 =0 − − Ki,Kj = iJ ij − = iϵijkLk. ! " − Next, we need 1 Li,Kj = ϵikl J kl,J0j 2 ! " i ! " = ϵikl gljJ k0 + gkjJ l0 2 − i # $ = ϵikl δljJ k0 δkj J l0 2 − i # $ = ϵikj J k0 ϵijlJ l0 2 − i # $ = ϵijkJ 0k + ϵijkJ 0k 2 = iϵijl# Kl. $ Lastly we compute the angular momentum commutators 1 1 [J+, J ]= (L + iK) , (L iK) − 2 2 − % & 1 = [L, L] i [L, K]+i [K, L]+[K, K] 4 { − } i = [K, L] 2 i = Ki,Lj eˆ eˆ 2 i · j i ! " = Ki,Li 2 =0! " 1 1 J i ,Jj = Li iKi , Lj iKj ± ± 2 ± 2 ± % & ' ( 1 # $ # $ = Li,Lj i Li,Kj i Ki,Lj Ki,Kj 4 ± ± − 1 )! " ! " ! " ! "* = iϵijkLk i iϵijlKl i iϵjilKl + iϵijkLk 4 ± ∓ = i)ϵijkLk ϵijlK# l ϵijl$Kl +# iϵijkLk$ * ∓ ± 1 = ) iϵijkLk ϵijlKl * 2 ∓ i ) * = ϵijk Lk iKk 2 ± i ) * = ϵijkJ k 2 ± 3 (b) The finite-dimensional representations of the rotation group correspond precisely the to the allowed values for angular momentum: integers or half-integers. The result of part (a) implies that all finite-dimensional representations of the Lorentz group correspond to pairs of integers or half integers, (j+,j ),correspondingtopairsofrepresentationsofthe rotation group. Using the fact that J = σ/2 in the spin-1/2 representation− of angular momentum, write explicitly the 1 1 transformation laws of the 2-component objects transforming according to the 2 , 0 and 0, 2 representations of the Lorentz group. Show that these correspond precisely to the transformations of ψ and ψ giving in (3.37). L# $ R # $ Proof: The representations of the Lorentz group are denoted by (m, n) πm,n where m, n are either half-integers or integers. The irreducible representations are given by ≡ π Li = I J (n) + J (m) I m,n (2m+1) ⊗ i i ⊗ (2n+1) π #Ki$ = i I J (n) J (m) I . m,n (2m+1) ⊗ i − i ⊗ (2n+1) + , 1 # $ With J = σ/2 the 2 , 0 representation is found to be # $ σi σi σi σi π Li = I I + I = I + I = I = m,n 2 ⊗ 1 2 ⊗ 1 2 2 ⊗ 1 2 ⊗ 1 2 - . # $ σi σi σi σi π Ki = i I I I = i I I = i I = i . m,n 2 ⊗ 1 − 2 ⊗ 1 2 − 2 ⊗ 1 − 2 ⊗ 1 − 2 - . - . # $ Thus, with Li = σi/2 and Ki = iσi/2 the transformation law becomes − i µν (ωµν J ) Φ 1 e− 2 Φ 1 ( 2 ,0) → ( 2 ,0) i µν = 1 ωµν J Φ 1 − 2 ( 2 ,0) - . i 0ν i iν = 1 ω0ν J ωiν J Φ 1 − 2 − 2 ( 2 ,0) - . i 00 i 0i i i0 i ij = 1 ω00J ω0iJ ωi0J ωij J Φ 1 − 2 − 2 − 2 − 2 ( 2 ,0) - . i 0i i 0i i ij = 1 ω0iJ ω0iJ ωij J Φ 1 − 2 − 2 − 2 ( 2 ,0) - . i i ijk k = 1 iω0iK ωij ϵ L Φ 1 − − 2 ( 2 ,0) - . =(1iβ K iθ L) Φ 1 − · − · ( 2 ,0) 1 i = 1 β σ θ σ Φ 1 − 2 · − 2 · ( 2 ,0) - . where we have defined βi = ω = ω and θk = ω ϵijk. 0i − i0 ij 1 Now for the 0, 2 representation we have # $ σi σi σi π Li = I + I I = I + I = m,n 1 ⊗ 2 1 ⊗ 2 1 ⊗ 2 2 2 - . # $ σi σi σi π Ki = i I I I = i I I = i I . m,n 1 ⊗ 2 − 1 ⊗ 2 2 − 2 ⊗ 1 2 ⊗ 1 - . - . # $ 4 Thus, with Li = σi/2 and Ki = iσi/2 the transformation law becomes i µν (ωµν J ) Φ 1 e− 2 Φ 1 (0, 2 ) → (0, 2 ) =(1iβ K iθ L) Φ 1 − · − · (0, 2 ) 1 i = 1+ β σ θ σ Φ 1 . 2 · − 2 · (0, 2 ) - . Upon comparison with equation (3.37) we identify Φ 1 = ψL and Φ 1 = ψR. ( 2 ,0) (0, 2 ) Thus, the left- and right-handed spinor transform accordingtoseparaterepresentationsoftheLorentzgroup. " (c) The identity σT = σ2σσ2 allows us to rewrite the ψ transformation in the unitarily equivalent form − L ψ′ ψ′ (1 + iθ σ/2+β σ/2) , → · · T 2 1 1 where ψ′ = ψL σ .Usingthislaw,wecanrepresenttheobjectthattransformsas 2 , 2 as a 2 2 matrix that has the ψR transformation law on the left and simultaneously, the transposed ψ transforms on the right.× Parametrize this matrix as L # $ V 0 + V 3 V 1 iV 2 . V 1 + iV 2 V 0 − V 3 - − . Show that the object V µ transforms as a 4-vector. Proof: Left-handed spinors transform according to 1 i ψ 1 β σ θ σ ψ . L → − 2 · − 2 · L - . T 2 With ψ′ = ψL σ we verify the transformation law T 1 i 2 ψ′ 1 β σ θ σ ψ σ → − 2 · − 2 · L -- . 1 i T = ψT σ2σ2 1 β σ θ σ σ2 L − 2 · − 2 · - . 2 1 T i T 2 = ψ′σ 1 β σ θ σ σ − 2 · − 2 · - . 1 i = ψ′ 1+ β σ + θ σ . 2 · 2 · - . 1 1 1 1 Now we are interested in the transformation properties of a 2 , 2 object. We parameterize the 2 , 2 object as the matrix 0 3# $1 2 # $ V + V V iV µ Φ 1 1 = 1 2 0 − 3 = V σµ ( 2 , 2 ) V + iV V V - − . 5 µ where it will be shown that V is a 4-vector. Applying the transformation to Φ 1 1 we get ( 2 , 2 ) 1 i 1 i Φ 1 1 1+ β σ θ σ Φ 1 1 1+ β σ + θ σ ( 2 , 2 ) → 2 · − 2 · ( 2 , 2 ) 2 · 2 · - . - . 1 1 = 1+ (β iθ) σ V µσ 1+ (β σ + iθ) σ 2 − · µ 2 · · - . - . 1 1 = V µσ + (β iθ) σV µσ + V µσ (β + iθ) σ + θ2,β2 µ 2 − · µ 2 µ · O V µ V µ # $ = V µσ + β (σσ + σ σ) iθ (σσ σ σ) µ 2 · µ µ − 2 · µ − µ V µ V µ = V µσ + βi σ ,σ iθi [σ ,σ ] µ 2 ·{ i µ}− 2 · i µ V 0 V j V 0 V j = V µσ + βi σ ,σ + βi σ ,σ iθi [σ ,σ ] iθi [σ ,σ ] µ 2 ·{ i 0} 2 ·{ i j }− 2 · i 0 − 2 · i j V 0 V j V 0 V j = V µσ + βi σ , I + βi σ ,σ iθi [σ , I] iθi [σ ,σ ] µ 2 ·{ i } 2 { i j }− 2 i − 2 i j V 0 V j V j = V µσ + βi (2σ )+ βi (2δ ) iθi 2iϵ σk µ 2 i 2 ij − 2 ijk = V µσ + V 0βiσ V iβ + V j θiϵ σk # $ µ i − i ijk i k i j i where σi, I =2σ , [σi, I]=0, σi,σj =2δij , [σi, I]=2iϵijkσ .Alsonotethatβ V δij = β Vi because gij = δij . { } { } k − − Recall that we have defined the anti-symmetric tensor ω0i = βi and ωij = ϵijkθ .Insertingtheseexpressionsintothe above, we have µ 0 i i j i k µ 0 i i j k V σµ + V β σi V βi + V θ ϵijkσ = V σµ + V ω0iσ V ω0i + V ωjkσ − µ 0 i − i 0 i j = V σµ + V ω0iσ + V ωi0σ + ωij V σ µ ν µ = V σµ + ωµν σ V ν ν µ = δµ + ω µ Vν σ . We would like to show that this is identical to equation (3.19)inP&S.P&Sassertthata4-vector# $ V µ transforms as follows i V α δα ω ( µν )α V β → β − 2 µν J β - .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    33 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us