Co-funded by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 691797 Innovative large-scale energy storage tech- nologies and Power-to-Gas concepts after optimization Report on experience curves and economies of scale Due Date 31 October 2018 (M32) Deliverable Number D7.5 WP Number WP7: Reducing Barriers Responsible Robert Tichler, EIL Author(s) Hans Böhm, Andreas Zauner, Sebastian Goers, Robert Tichler, Pieter Kroon Reviewer Steffen Schirrmeister, TKIS Status Started / Draft / Consolidated / Review / Approved / Submitted / Ac- cepted by the EC / Rework Dissemination level PU Public PP Restricted to other programme participants (including the Commission Services) Restricted to a group specified by the consortium RE (including the Commission Services) Confidential, only for members of the consortium CO (including the Commission Services) D7.5 Report on experience curves and economies of scale Page 2 of 131 Document history Version Date Author Description 1.0 2017-10-03 Andreas Zauner Started, structure the document 2.0 2018-08-27 Andreas Zauner 1st Draft for upload on EMDESK 3.0 2018-10-15 Andreas Zauner 2nd Draft for upload on EMDESK 4.0 2018-10-23 Andreas Zauner Final Version D7.5 Report on experience curves and economies of scale Page 3 of 131 Table of Contents 1 Introduction ............................................................................................................................ 18 2 Methodological focus: Learning curves, experience curves, and economies of scale ............ 20 2.1 Distinction between learning curves and experience curves ........................................... 20 2.2 Learning effects .............................................................................................................. 20 2.3 Economies of scale ........................................................................................................ 21 3 Theory of technical learning ................................................................................................... 23 3.1 The learning curve concept ............................................................................................ 23 3.2 Formal description of the learning curve concept ............................................................ 25 3.2.1 The One Factor Learning Curve (OLFC) ................................................................. 26 3.2.2 The Two Factor Learning Curve (TFLC) .................................................................. 27 3.3 Qualitative representation of the learning system ........................................................... 28 3.3.1 The Input-Output-Model of Learning ........................................................................ 28 3.3.2 Areas of learning and their implications for learning curves ..................................... 28 3.3.3 Structural technological changes ............................................................................. 29 3.3.4 Structural changes of the market ............................................................................. 30 3.3.5 Influence of governmental R&D and market introduction programs ......................... 31 3.3.6 The dynamic of learning .......................................................................................... 33 4 Literature review on learning rates ......................................................................................... 34 4.1 Learning rates for energy technologies ........................................................................... 34 4.2 Learning rates for methanation and other comparable technologies ............................... 37 5 Current investment costs of power-to-gas-processes ............................................................ 39 5.1 Current investment costs of electrolyzer ......................................................................... 39 5.1.1 Literature review on AEC and PEMEC .................................................................... 39 5.1.2 Literature review on SOEC ...................................................................................... 43 5.2 Current investment costs of methanation units ............................................................... 45 5.2.1 Literature review on chemical methanation .............................................................. 46 5.2.2 Literature review on biological methanation ............................................................. 47 5.2.3 Assessment of literature data .................................................................................. 48 5.3 Current costs for CO2-capture ........................................................................................ 50 5.3.1 CO2 from biogas or bioethanol plant ........................................................................ 50 5.3.2 CO2 from wastewater treatment plant ...................................................................... 51 5.3.3 Direct air capture ..................................................................................................... 51 5.3.4 Assessment of literature data .................................................................................. 51 6 Demand potential of power-to-gas products .......................................................................... 53 6.1 Literature review power-to-gas potential ......................................................................... 53 6.1.1 Power-to-gas demand potential at a national level ................................................... 53 D7.5 Report on experience curves and economies of scale Page 4 of 131 6.1.2 Power-to-gas demand potential at the European level ............................................. 55 6.1.3 Power-to-gas demand potential at a global level ..................................................... 56 6.1.4 Assessment of literature data .................................................................................. 57 6.2 Derivation of future PtG demand .................................................................................... 59 7 CoLLeCT - Component Level Learning Curve Tool ............................................................... 64 7.1 The idea of component-based technological learning ..................................................... 64 7.2 Implementation in CoLLeCT ........................................................................................... 65 7.2.1 Module Level ........................................................................................................... 65 7.2.2 System Level ........................................................................................................... 69 8 Application of the CoLLeCT approach to power-to-gas .......................................................... 72 8.1 Electrolysis Stack Module ............................................................................................... 72 8.1.1 Analysis of the experience curve for PEM electrolysis cells ..................................... 72 8.1.2 Transferring results to alkaline electrolysis cells ...................................................... 77 8.1.3 Estimations on solid oxide electrolysis cells ............................................................. 81 8.1.4 Comparison with the conventional approach ........................................................... 83 8.2 Electrolysis Plant System ............................................................................................... 83 8.2.1 Future demand for water electrolysis for hydrogen production ................................. 84 8.2.2 System definition ..................................................................................................... 85 8.3 Methanation System ....................................................................................................... 88 8.3.1 Future demand for methanation applications for SNG production ............................ 88 8.3.2 System definition “catalytic” ..................................................................................... 89 8.3.3 System definition “biological” ................................................................................... 92 9 Potential for cost reductions through technological learning ................................................... 95 9.1 Cost predictions for electrolysis systems ........................................................................ 95 9.2 Cost predictions for methanation systems ...................................................................... 98 9.3 Sensitivity to parameter variation .................................................................................. 100 9.3.1 Considering replacements ..................................................................................... 100 9.3.2 Learning rate variation ........................................................................................... 101 9.3.3 Variation of technology share ................................................................................ 103 9.4 Cost predictions with nominal prices ............................................................................. 105 10 Conclusions ......................................................................................................................... 108 11 Bibliography ......................................................................................................................... 112 Appendix ...................................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages131 Page
-
File Size-