Spin Orbit Interaction in Semiconductors J

Spin Orbit Interaction in Semiconductors J

UNIVERSIDADE DE SÃO PAULO Instituto de Física de São Carlos Spin orbit interaction in semiconductors J. Carlos Egues Instituto de Física de São Carlos Universidade de São Paulo [email protected] International School of Physics Enrico Fermi: Quantum Spintronics and Related Phenomena Varenna, June 19 2012 Lecture 1 • Motivation • Spin & orbit: an early experiment • Spin-orbit interaction: a simple picture • Sommerfeld model + spin orbit: spin splitting • New experiment: interband s-o coupling (2D) • „Cross-dressed‟ atoms as cool spins (energy scales, Zitterbewegung) • Summary Carlos Egues, Varenna 2012 Some (early) motivation 2012 Conventional electronics: charge plays a fundamental role in devices [integrated circuits: resistors, transistors (billions), etc.] Varenna , Vg Egues Source Drain Carlos Carlos Field Effect Transistor (FET) “spin: factor of 2” (http://www.pbs.org/transistor/science/) „Rashba effect‟ Datta and Das (APL 56, 1990) Emmanuel Rashba Supriyo.Datta Gate FM1 2DEG FM2 (courtesy of Th. Schäpers) Motivation 2012 Spin FET (Semiconductor spintronics, etc.) Varenna , • Most popular proposed spintronic device (Datta and Das ’90); Egues • Coherent electric control of magnetic degrees of freedom; Carlos Carlos • Low energy to rotate/flip spins; faster (?); (Hall & Flatté, APL/2006) • More control & various modes of operation. Logic gates with “dynamic” functions: reprogrammable on the fly; Multifunctional: logic, storage, processing, communication, etc, in a single chip? • Design flexibility (hybrid devices, geometry, etc. etc.) • Quantum effects: coherence? Quantum computation? [Awschalom, Flatte, and Samarth, Sci. Am., 2002 (also Sci. Am. Oct/2004); Awschalom & Flatté Nat. Phys. (2007)] • General: fertile ground for novel spin-dependent phenomena. Interplay of many-body effects (tunability) & quantum confinement; spin-flip mechanisms, spin injection and spin polarized transport, non-local quantum correlations (EPR), etc. Spin orbit: renewed interest Topological insulators ‘Two-faced’ solid: an insulator from the inside… a conductor from the outside… Spin-orbit interaction: define the ‘topology’ of the bands Majorana fermions Exotic (half) fermion: ‘particle=antiparticle’ • Spin-orbit interaction + quantum wire + s-wave SC: proximity eff. unconventional p-wave pairing in the wire • Zeeman (or exchange) gap: topological superconducting wire (Kitaev: spinless p-wave SC chain Majorana end modes) Synthetic gauge potentials: cold atoms in optical lattices Carlos Egues, Varenna 2012 Spin-orbit: an early experiment Richarson (1908); Einstein & de Haas (1915) Carlos Egues, Varenna 2012 Angular momentum “spin orbit” 2012 Ltot=0 magnet rotates conservation Varenna , Egues Carlos Carlos Ltot=0 -L Compass: difficulties • Ships (steel) • Submarines • Proximity to poles L Patent office (Bern): • navigation system using gyroscopes Sci. Am., October/2004 Experiment: Einstein & de-Haas 2012 (1915) Basic idea: Varenna Sci. Am., October/2004 , 1) Orbital motion (loop) magnetic moment. Egues 2) Alignment of moments (via a field B) change in angular momentum of bar. Carlos string 3) Angular momentum conservation Fe bar must rotate (“s-o coupling”). 4) The experiment worked beautifully! mirrors 5) However (factor of 2): the ferromagnetism “Laser” of Fe is due to the intrinsic electron spin Electromagnet (rather than the orbital one). More mathematically: Fe cylinder Lloops Lmech 0, loops loops bra bar MLbar bar bar magnet loops mec ('since', s) Mbar / Lbar electron spins C. Kittel, Phys. Rev. 76, 743 (1949) Solids: basics Carlos Egues, Varenna 2012 Sommerfeld electrons Sommerfeld model: free & non-interacting electrons in a box with periodic BC. („Fermi gas‟) 2 pˆ ikx x ik x() x L ik x L HH , e = e e 1 2m0 bare mass 1 22k 2 kk,, exp(ik r ) & , knii V 2m0 L orbital spin (i=x,y,z) ni Z Volume V, N electrons Fermi sea Parabolic band “Potential” N (degenerate gas – spin) n k z V z SF (k ) x 2012 (Fermi surface) Fermi level F y k Varenna k y , x x 3 2 k 3 n kx F Egues Plane waves: k space: Density of states: () delocalized localized (DOS) Carlos Carlos Rashba spin orbit: basics (spin orbit interaction in two-dimensional electron gases) Electric manipulation of intrinsic magnetic degrees of freedom. (coherent spin control) Carlos Egues, Varenna 2012 Rashba spin-orbit interaction (“poor man’s derivation”) Atomic case: Heterojunction: 2012 v Potential profile: V(z) Note structural -e Nitta et al. PRL ‘97 inversion asymmetry r Engels et al. PRB ’97 Varenna (SIA) , r -e +Ze +Ze Two-dimensional Egues Can control -v slope of V(z) electron gas (2DEG) In its rest frame, the electron feels: Carlos via gate! 1 B v E eff nucleus dV 2c „Thomas precession‟ In analogy with the atomic case:V zˆ Spin-orbit interaction: (Kroemer, Am.J.Phys. 2004) dz ge Hence, the Rashba s-o term is: E μ B S(vE) so spin eff 2mc2 dV “Electric HR zˆ ()σp Field” Corresponding Hamiltonian: so dz ge σ H ( pV ) Defining a s-o coupling constant : so 2 2mc 2 Ze2 or, H LS so 2 2 3 2m c r H R (σp) p p dV dV so z x y y x H so rˆ(σp), V rˆ Bernardes, et al. PRL 99, 076603 (2007) dr dr Calsaverini, el al. PRB 78, 155313 (2008) Datta-Das spin transistor 2012 S. Datta and B. Das, Appl. Phys. Lett. 56, 655 (1990). polarizer analyzer Varenna , z Egues y Awschalom, Flatté & Samarth Sci. Am. 2002 Carlos Carlos x L („Relativistic chip‟ (Prinz, Phys. Today, adapted) Sci. Am. 2004) Main ingredients: 2DEG + spin orbit + “FM” emitter/collector Hamiltonian: (lowest subband: simplicity) 1 2 2 1 2 H p p p p H1DEG px y px 2DEG 2m x y x y y x 2m “Time evolution”: rotation about the y axis 1 cos( / 2) U R cos( / 2) sin( / 2) R ik y / RR 0 sin(R / 2) UeR sin(RR / 2) cos( / 2) 2 R 2mL / ( basis) z I. 1 cosR L vF (kF / m) Sommerfeld 2D + Rashba: quasi-1D case 2012 Rashba Confinement 1 22 Varenna H px py i yx x y V()y , 2m Zeroth-order solution (no Rashba): quantum wire subbands Egues 2 2 Carlos Carlos kx nn, ()kx , nb a, ,... 01 2 2 2m Hp pxy V()y 2m ixkx k,, n ey n (),, Effective quasi-1D Rashba Hamiltonian: two lowest subbands a and b kkx a, ()k i k0 i d d a d / dy b i k () k i d 0 a, (“interband mixing”) H 0 i d () k i k Moroz & Barnes, „99 b, Mireles & Kirczenow, ‟01 i d0 i k () k Egues, Burkard, Loss,‟ 02 b, Sommerfeld 2D + Rashba: quasi-1D case 2012 Rashba Confinement 1 22 Varenna H px py i yx x y V()y , 2m Zeroth-order solution (no Rashba): quantum wire subbands Egues 2 2 Carlos Carlos kx nn, ()kx , nb a, ,... 01 2 2 2m Hp pxy V()y 2m ixkx k,, n ey n (),, Effective quasi-1D Rashba Hamiltonian: two lowest subbands a and b kkx a, ()k i k0 i d d a d / dy b i k () k i d 0 a, (“interband mixing”) H 0 i d () k i k Moroz & Barnes, „99 b, Mireles & Kirczenow, ‟01 i d0 i k () k Egues, Burkard, Loss,‟ 02 b, Sommerfeld 2D + Rashba: quasi-1D case 2012 Rashba Confinement 1 22 Varenna H px py i yx x y V()y , 2m Zeroth-order solution (no Rashba): quantum wire subbands Egues 2 2 Carlos Carlos kx nn, ()kx , nb a, ,... 01 2 2 2m Hp pxy V()y 2m ixkx k,, n ey n (),, Effective quasi-1D Rashba Hamiltonian: two lowest subbands a and b kkx a, ()k i k0 i d d a d / dy b i k () k i d 00 a, (“interband mixing”) H 0 i d () k i k Moroz & Barnes, „99 b, Mireles & Kirczenow, ‟01 i d0 i k () k Egues, Burkard, Loss,‟ 02 b, Strictly 1D Case: d=0 Neglects interband mixing a a ()k i k H (lowest subband) 1D i k() k Eigenvalues: a Eigenvectors (spin): 2 2 2 2 kR 1 s (k) k skR , s i 2m 2m y 2 m R 1 k i R 2 y 2 No Rashba Rashba (gate induced) (k) ()k b 2012 bs Quasi 1D Varenna , a as Egues k Carlos A recent experiment Carlos Egues, Varenna 2012 2012 Varenna , 12, 42 meV Egues Carlos Carlos 31 meV 14 meV Tunable : # of ML `12 , ´: const. in this range (12 , 10 ) 12, Carlos Egues, Varenna 2012 Intersubband coupling strength coupling Intersubband „Ref. [11]‟ „Ref. Carlos Egues, Varenna 2012 „Ref. [12]‟ 2012 Varenna , Egues Carlos Carlos Eigenvectors 12, 1 Eigenvalues „Ref. [12]‟ 2012 Varenna , Egues Carlos Carlos Crossings Dirac cones Eigenvectors 12, 1 Eigenvalues „Ref. [12]‟ 2012 Varenna , Egues Carlos Carlos Anticrossings Dirac cones Eigenvectors 12, 1 Eigenvalues H Bentmann, PRL 108, 196801 (2012) 2012 Varenna , Egues (ab initio) Carlos J. Fu, M. Hachiya, P. H. Penteado, & CE 0 214 12 0 Crossings H Bentmann, PRL 108, 196801 (2012) 2012 Varenna , Egues (ab initio) Carlos J. Fu, M. Hachiya, P. H. Penteado, & CE 01. 2 3 2 1 1 2 214 12 01. 2 x 3 H Bentmann, PRL 108, 196801 (2012) 2012 Varenna , Egues (ab initio) Carlos J. Fu, M. Hachiya, P. H. Penteado, & CE 0. 25 1 21 0. 25 12 08. 0. 05 2 x Important interplay of Rashba and Dresselhaus! „Ref. [13]‟ 2012 Varenna , Egues Carlos Carlos Spin-resolved bands „kink‟ Two-photon photoemission from a Bi/Cu(111) surface alloy „First principles calculations‟ Quasi 1D channels Phys. Rev. Lett. 89, 176401 (2002) 2012 Varenna , Egues Carlos Carlos Appl. Phys. Lett., 82, 2658 (2003) 2 d V g G (e2 / h) dR kc L 2mL 0 R 0 2 F R 2 2 d An interesting realization of interesting realization An the spin orbit interaction the Carlos Egues, Varenna 2012 „Cross as coolspins - dressed‟ atoms dressed‟ Carlos Egues, Varenna 2012 2012 Optical traps & lattices Varenna , Egues • Lasers + magnetic fields trap & cool atoms Carlos Carlos • Control interaction among atoms & BECs • Simulate canonical condensed matter models • Light induced gauge fields (Synthetic E’s & B’s) Atoms as two-level (spin) systems 2012 1) Hyperfine ground and excited states of alkali atoms, e.g., F=1 & 2 in 87Rb; Varenna 2) Dipole trap; , 3) Intersecting Raman lasers detuned from the resonance 5S1/2 5P1/2 , 5P3/2; 4) Zeeman fields – linear and quadratic: state selection.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    45 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us