Merging Galaxies and Dark Matter Halos by Andrew Rodger Wetzel a Dissertation Submitted in Partial Satisfaction of the Requireme

Merging Galaxies and Dark Matter Halos by Andrew Rodger Wetzel a Dissertation Submitted in Partial Satisfaction of the Requireme

Merging Galaxies and Dark Matter Halos by Andrew Rodger Wetzel A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Astrophysics in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Martin White, Chair Professor Bill Holzapfel Professor Eliot Quataert Spring 2010 Merging Galaxies and Dark Matter Halos Copyright 2010 by Andrew Rodger Wetzel 1 Abstract Merging Galaxies and Dark Matter Halos by Andrew Rodger Wetzel Doctor of Philosophy in Astrophysics University of California, Berkeley Professor Martin White, Chair Mergers between distinct objects are a natural part of hierarchical structure formation. Mergers are also one of the most critical elements in the evolution of both galaxies and halos. I use high-resolution, cosmological volume simulations to explore galaxy and halo evolution and merging activity in a cosmological context, including environmental dependence, merger rates and dynamics, and how these processes in halos connect with those of galaxies. I first explore halo merging and evolution, focusing on its interplay with large-scale environment. While halo spatial clustering has been thought to depend only on mass, I ex- amine how spatial clustering depends on secondary parameters such as halo formation time, concentration, and recent merger history, a phenomenon known as “assembly bias”. Next, I examine the extent to which close spatial pairs of objects can be used to predict mergers, finding limited utility to the pair-merger method arising from a competition between merger efficiency and completeness. I also explore the dependence of merging on environmental den- sity, discovering that merging is less efficient in overdense environments. I then investigate how a massive galaxy/halo population at high redshift connects to a massive population of the same number density today, finding that scatter in mass growth and mergers between massive objects preclude a direct population mapping either forward or backward in time. In the latter part of this work, I explore the dynamics and mergers of galaxies in groups and clusters. I first examine the orbital distributions of satellite halos/galaxies at the time of infall onto a more massive host halo, finding that satellite orbits become more radial and penetrate deeper at higher host halo mass and higher redshift. I then track the evolution of galaxies in groups directly, examining the merger rates of galaxies over time and finding that galaxy mergers do not simply trace halo mergers. I also examine the small-scale environments of galaxy mergers, discovering that recently merged galaxies exhibit enhanced small-scale spatial clustering for a short time after a merger. Finally, by using abundance matching to assign stellar mass to subhalos, I explore the importance of merging vs. disruption processes for satellite galaxy evolution. I rigorously test the connection of galaxies to subhalos by comparing simulations against observed galaxy spatial clustering, satellite fractions, and cluster satellite luminosity functions, finding agreement in all cases. i Contents List of Figures v List of Tables vii Acknowledgments viii 1 Introduction 1 1.1 ΛCDMCosmology ................................ 2 1.2 Density Fluctuations & Spatial Clustering . ........ 4 1.3 CosmologicalParameters. ... 5 1.4 DarkMatterHalos ................................ 5 1.4.1 HaloCollapse&MassFunction . 5 1.4.2 HaloBias ................................. 7 1.4.3 HaloStructure .............................. 7 1.4.4 HaloMergers ............................... 8 1.5 Galaxies...................................... 9 1.5.1 Subhalos&Galaxies ........................... 9 1.5.2 GalaxyMergers.............................. 10 1.5.3 TheSubhalo-GalaxyConnection. .. 11 2 The Clustering of Massive Halos 13 2.1 Introduction.................................... 13 2.2 Simulations .................................... 16 2.3 MeasuringClustering. .. 17 2.4 AssemblyBias................................... 19 2.5 MergerBias.................................... 22 2.5.1 Markedcorrelationfunction . .. 25 2.5.2 Integratedcorrelationfunction. ..... 28 2.5.3 Likelihood fit to r0 ............................ 30 2.6 Summary&Conclusion ............................. 31 Contents ii 3 ClosePairsasProxiesforGalaxyClusterMergers 35 3.1 Introduction.................................... 36 3.2 Simulations .................................... 38 3.3 ClosePairsasPredictorsofMergers. ...... 39 3.3.1 Pair Mergers at z =0........................... 40 3.3.2 RedshiftDependenceofPairMergers . ... 42 3.3.3 Mass & Linking Length Dependence of Pair Mergers . .... 42 3.3.4 Merger Timescale Dependence of Pair Mergers . ..... 46 3.4 Scatter in Mass, Redshift, & Redshift Space Distortions ............ 47 3.5 The Merger Kernel & the Density Dependence of Mergers . ........ 49 3.5.1 DensityDependenceoftheMergerKernel . ... 50 3.5.2 Density Dependence of Close Pair Mergers . .... 52 3.6 TheClusteringofClosePairs&MergerBias . ...... 55 3.7 Summary&Conclusion ............................. 57 4 Connecting Populations of Fixed Number Density across CosmicTime 61 4.1 Introduction.................................... 61 4.2 Methods...................................... 62 4.3 ScatterinMassEvolution . .. 63 4.4 Connecting Populations of Fixed Number Density . ....... 63 4.5 Summary&Discussion.............................. 68 5 On the Orbits of Infalling Satellite Halos 70 5.1 Introduction.................................... 70 5.2 Methods...................................... 72 5.2.1 Simulations&HaloTracking. 72 5.2.2 EjectedHalos&Re-mergers . 73 5.2.3 CalculatingOrbits ............................ 73 5.2.4 CalculatingOrbitalDistributions . ..... 74 5.3 Orbital Distributions at z =0.......................... 78 5.4 MassDependence................................. 79 5.5 RedshiftEvolution ............................... 83 5.6 FitstoOrbitalDistributions . ..... 89 5.7 Summary&Discussion.............................. 91 6 Galaxy Merger Rates, Counts, & Types 94 6.1 Introduction.................................... 94 6.2 NumericalTechniques .............................. 96 6.2.1 Simulations ................................ 96 6.2.2 SubhaloTracking ............................. 97 6.2.3 SubhaloMassAssignment . 101 6.2.4 Stellar Mass & Gas Content of Subhalo Galaxies . ..... 103 Contents iii 6.2.5 SubhaloMass&CircularVelocity . 103 6.2.6 SatelliteSubhaloMassFunction . 107 6.2.7 SatelliteFraction . 110 6.3 MergerCriteria&Rates ............................ 110 6.3.1 MergerCriteria .............................. 110 6.3.2 FitstoSimulation............................. 112 6.3.3 Subhalovs.HaloMergerRates . 113 6.3.4 ResolvingtheDiscrepancy . 114 6.4 Satellitevs.CentralMergers . ..... 115 6.5 Galaxy&HaloMergerCounts. 117 6.5.1 CountsofRecentMergers . 117 6.5.2 Fraction“On”............................... 117 6.6 EvolutionoftheSatelliteHaloOccupation . ....... 119 6.6.1 SatelliteHaloOccupationinSimulation . .... 120 6.6.2 Analytic Estimate of Satellite Halo Occupation . ..... 120 6.6.3 Comparison to Other Work on Satellite Occupation Evolution . 123 6.7 Summary&Discussion.............................. 124 7 The Clustering & Host Halos of Galaxy Mergers at High Redshift 127 7.1 Introduction.................................... 127 7.2 NumericalTechniques&MergerDefinitions . ..... 129 7.2.1 Simulations&SubhaloTracking. 129 7.2.2 MergerCriteria .............................. 130 7.3 Small-ScaleSpatialClustering . ...... 130 7.4 Halo Occupation Distribution & Radial Profile . ....... 132 7.4.1 HODofSubhalos ............................. 133 7.4.2 Central & Satellite Cross-Correlation . ...... 134 7.4.3 Central&SatelliteHOD . 135 7.4.4 RadialDistributionProfile . 138 7.5 MergerPairs.................................... 140 7.6 Summary&Discussion.............................. 140 8 Whatdeterminessatellitegalaxydisruption? 143 8.1 Introduction.................................... 143 8.2 NumericalMethods................................ 146 8.2.1 Simulations&SubhaloTracking. 146 8.2.2 TheStellarMassofSubhalos . 148 8.2.3 AssigningInfallMass&StellarMass . 149 8.3 ImpactofSatelliteRemoval . 152 8.3.1 HaloOccupationDistribution . 152 8.3.2 SatelliteRadialDensityProfile . 154 8.3.3 Radius at Removal: Merger vs. Disruption . .... 157 Contents iv 8.3.4 AnalyticalModelforSatelliteRemoval . .... 158 8.4 ComparisonswithObservations . .... 160 8.4.1 SpatialClustering. 160 8.4.2 SatelliteFraction . 164 8.4.3 Cluster Satellite Luminosity Function . ...... 167 8.5 HighRedshift ................................... 167 8.5.1 HOD&AnalyticRemoval . 167 8.5.2 Spatial Clustering at z 1........................ 170 8.5.3 EvolutionoftheSatelliteFraction∼ . ..... 172 8.6 ImpactofSimulationSize&Cosmology . .... 172 8.7 ComparisonswithOtherRemovalCriteria . ...... 176 8.8 Summary&Conclusion ............................. 179 Bibliography 182 v List of Figures 2.1 Spatialclusteringbiasvs. halomass . ........ 18 2.2 Influence of halo formation and structure on spatial clustering .......... 20 2.3 Halomassconservationduringamerger . ...... 23 2.4 Halo marked auto-correlation function for recent merger activity. 26 2.5 Halo integrated auto-correlation function for recent mergeractivity . 27 2.6 Likelihood fit to halo merger auto-correlation function .............. 29 2.7 Halomergerbiasvs.redshift . .... 32 2.8 Halomergerbiasvs. mergermassratio . ...... 33 3.1 Distribution of halo merger progenitor separations . .............. 39 3.2 Fraction

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    204 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us