LECTURE 3 LAGRANGE INTERPOLATION • Fit Points With

LECTURE 3 LAGRANGE INTERPOLATION • Fit Points With

CE30125 - Lecture 3 LECTURE 3 LAGRANGE INTERPOLATION th • Fit N + 1 points with an N degree polynomial g(x) f 2 f(x) f f 3 f4 1 f f0 N x0 x1 x2 x3 x4 ... xN •fx = exact function of which only N + 1 discrete values are known and used to estab- lish an interpolating or approximating function gx •gx = approximating or interpolating function. This function will pass through all specified N + 1 interpolation points (also referred to as data points or nodes). p. 3.1 CE30125 - Lecture 3 • The interpolation points or nodes are given as: xo fxo fo x1 fx1 f1 x2 fx2 f2 : xN fxN fN th • There exists only one N degree polynomial that passes through a given set of N + 1 points. It’s form is (expressed as a power series): 2 3 N gx= ao +++++a1xa2x a3x aNx where ai = unknown coefficients, i = 0 N (N + 1 coefficients). • No matter how we derive the Nth degree polynomial, • Fitting power series • Lagrange interpolating functions • Newton forward or backward interpolation The resulting polynomial will always be the same! p. 3.2 CE30125 - Lecture 3 Power Series Fitting to Define Lagrange Interpolation •gx must match fx at the selected data points 2 N gxo = fo ao ++++a1xo a2xo aNxo = fo 2 N gx1 = f1 ao ++a1x1 a2x1 ++ aNx1 = f1 : : 2 N gxN = fN ao + a1xN +++a2xN aNxN = fN • Solve set of simultaneous equations 1 x x2 xN o o o ao fo 2 N a f 1 x1 x1 x1 1 = 1 : : 2 N aN fN 1 xN xN xN • It is relatively computationally costly to solve the coefficients of the interpolating func- tion gx (i.e. you need to program a solution to these equations). p. 3.3 CE30125 - Lecture 3 Lagrange Interpolation Using Basis Functions • We note that in general gxi = fi •Let N gx= fi Vix i = 0 where Vix = polynomial of degree N associated with each node i such that 0 i j Vixj 1 i = j • For example if we have 5 interpolation points (or nodes) gx3 = foVox3 ++++f1V1x3 f2V2x3 f3V3x3 f4V4x3 Using the definition for Vixj : V0x3 = 0 ; V1x3 = 0 ; V2x3 = 0 ; V3x3 = 1 ; V4x3 = 0 ,we have: gx3 = f3 p. 3.4 CE30125 - Lecture 3 • How do we construct Vix ? • Degree N • Roots at xox1 x2 xi – 1 xi + 1 xN (at all nodes except xi ) • Vixi = 1 •Let Wix = xx– o xx– 1 xx– 2 xx– i – 1 xx– i + 1 xx– N • The function Wi is such that we do have the required roots, i.e. it equals zero at nodes xox1 x2 ... , xN except at node xi • Degree of Wix is N • However Wix in the form presented will not equal to unity at xi • We normalize Wix and define the Lagrange basis functions Vix xx– o xx– 1 xx– 2 xx– i – 1 xx– i + 1 xx– N Vix = -------------------------------------------------------------------------------------------------------------------------------------------------------- xi – xo xi – x1 xi – x2 xi – xi – 1 xi – xi + 1 xi – xN p. 3.5 CE30125 - Lecture 3 • Now we have Vix such that Vixi equals: xi – xo xi – x1 xi – x2 xi – xi – 1 1 xi – xi + 1 xi – xN Vixi = ------------------------------------------------------------------------------------------------------------------------------------------------------------ xi – xo xi – x1 xi – x2 xi – xi – 1 xi – xi + 1 xi – xN Vixi = 1 • We also satisfy Vixj = 0 for ij x2 – xo 1 x2 – x2 x2 – x3 x2 – xN e.g. V1x2 ==---------------------------------------------------------------------------------------------------------0 x1 – xo 1 x1 – x2 x1 – x3 x1 – xN • The general form of the interpolating function gx with the specified form of Vix is: N gx= fiVix i = 0 • The sum of polynomials of degree N is also polynomial of degree N • gx is equivalent to fitting the power series and computing coefficients ao aN . p. 3.6 CE30125 - Lecture 3 Lagrange Linear Interpolation Using Basis Functions • Linear Lagrange N = 1 is the simplest form of Lagrange Interpolation 1 gx= fiVix i = 0 gx= foVox + f1V1x where xx– 1 x1 – x xx– o Vox ==--------------------- --------------------- and V1x = --------------------- xo – x1 x1 – xo x1 – xo V (x) V1(x) 1.0 0 (x) x0 x1 p. 3.7 CE30125 - Lecture 3 Example • Given the following data: xo = 2 fo = 1.5 x1 = 5 f1 = 4.0 Find the linear interpolating function gx • Lagrange basis functions are: 5 – x x – 2 V x = ----------- and V x = ----------- o 3 1 3 • Interpolating function g(x) is: gx= 1.5Vox + 4.0V1x p. 3.8 CE30125 - Lecture 3 4 2 1.5 V0 (x) x x0 = 2 x1 = 5 4 4.0 V (x) 2 1 x x0 = 2 x1 = 5 g(x) = 1.5 V0(x) + 4.0V1(x) x0 = 2 x1 = 5 p. 3.9 CE30125 - Lecture 3 Lagrange Quadratic Interpolation Using Basis Functions • For quadratic Lagrange interpolation, N=2 2 gx= fi Vix i = 0 gx= foVox ++f1V1x f2V2x where xx– 1 xx– 2 Vox = ------------------------------------------ xo – x1 xo – x2 xx– o xx– 2 V1x = ------------------------------------------ x1 – xo x1 – x2 xx– o xx– 1 V2x = ------------------------------------------ x2 – xo x2 – x1 p. 3.10 CE30125 - Lecture 3 V0 (x) V1(x) V2(x) 1.0 x x0 x1 x2 • Note that the location of the roots of V0x , V1x and V2x are defined such that the basic premise of interpolation is satisfied, namely that gxi = fi . Thus: gxo ==Voxo fo ++V1xo f1 V2xo f2 f0 gx1 ==Vox1 fo ++V1x1 f1 V2x1 f2 f1 gx2 ==Vox2 fo ++V1x2 f1 V2x2 f2 f2 p. 3.11 CE30125 - Lecture 3 Example • Given the following data: xo =3 fo = 1 x1 = 4 f1 = 2 x2 = 5 f2 = 4 Find the quadratic interpolating function gx • Lagrange basis functions are x – 4 x – 5 V x = ---------------------------------- o 34– 35– x – 3 x – 5 V x = ---------------------------------- 1 43– 45– x – 3 x – 4 V x = ---------------------------------- 2 53– 54– • Interpolating function g(x) is: gx= 1.0Vox ++2.0V1x 4.0V2x p. 3.12 CE30125 - Lecture 3 1.0 1.0 V0 (x) x x0 = 3 x2 = 5 x1 = 4 2.0 2.0 V1(x) x x0 = 3 x1 = 4 x2 = 5 4.0 4.0 V2(x) x x0 = 3 x1 = 4 x2 = 5 g(x) = 1.0 V0(x) + 2.0V1(x) + 4.0V2(x) 4.0 x0 = 3 x1 = 4 x2 = 5 p. 3.13 CE30125 - Lecture 3 Lagrange Cubic Interpolation Using Basis Functions • For Cubic Lagrange interpolation, N=3 Example • Consider the following table of functional values (generated with fx= lnx ) i xi fi 0 0.40 -0.916291 1 0.50 -0.693147 2 0.70 -0.356675 3 0.80 -0.223144 • Find g0.60 as: xx– 1 xx– 2 xx– 3 xx– o xx– 2 xx– 3 gx= fo---------------------------------------------------------------- + f1---------------------------------------------------------------- xo – x1 xo – x2 xo – x3 x1 – xo x1 – x2 x1 – x3 xx– o xx– 1 xx– 3 xx– o xx– 1 xx– 2 ++f2---------------------------------------------------------------- f3---------------------------------------------------------------- x2 – xo x2 – x1 x2 – x3 x3 – xo x3 – x1 x3 – x2 p. 3.14 CE30125 - Lecture 3 0.60– 0.50 0.60– 0.70 0.60– 0.80 g0.60 = –0.916291 ------------------------------------------------------------------------------------------------ 0.40– 0.50 0.40– 0.70 0.40– 0.80 0.60– 0.40 0.60– 0.70 0.60– 0.80 –0.693147 ------------------------------------------------------------------------------------------------ 0.50– 0.40 0.50– 0.70 0.50– 0.80 0.60– 0.40 0.60– 0.50 0.60– 0.80 –0.356675 ------------------------------------------------------------------------------------------------ 0.70– 0.40 0.70– 0.50 0.70– 0.80 0.60– 0.40 0.60– 0.50 0.60– 0.70 –0.223144 ------------------------------------------------------------------------------------------------ 0.80– 0.40 0.80– 0.50 0.80– 0.70 g0.60 = –0.509976 p. 3.15 CE30125 - Lecture 3 Errors Associated with Lagrange Interpolation • Using Taylor series analysis, the error can be shown to be given by: ex= fx– gx N + 1 ex= Lxf xo xN where N + 1 th f = N + 1 derivative of f w.r.t. x evaluated at xx– o xx– 1 xx– N th Lx==--------------------------------------------------------------- a n N + 1 degree polynomial N + 1 ! •Notes • If fx = polynomial of degree M where MN , then N + 1 f x = 0 ex= 0 for all x Therefore gx will be an exact representation of fx p. 3.16 CE30125 - Lecture 3 N + 1 • Since in general is not known, if the interval xo xN is small and if f x does not change rapidly in the interval N + 1 xo + xN ex Lxf x where x = ------------------ . m m 2 N + 1 • f can be estimated by using Finite Difference (F.D.) formulae • Lx will significantly effect the distribution of the error • Lx is a minimum at the center of xo xN and a maximum near the edges • e.g. using 6 point interpolation Lx looks like: 012345 • Lx= 0 at all data points • Lx largest 0 x 1 4 x 5. Lx becomes very large outside of the interval. p. 3.17 CE30125 - Lecture 3 • As the size of the interpolating domain increases, so does the maximum error within the interval Dx= N – xo Lmax emax x0 xxN x0 xxN • As N increases from a small value, Lmax emax x0 xxN x0 xxN • However as NN CRIT Lmax for a given xo xN and thus emax x0 xxN x0 xxN • Therefore convergence as N does not necessarily occur!! N + 1 • Properties of f will also influence error as D and N vary p. 3.18 CE30125 - Lecture 3 Example • Estimate the error made in the previous example knowing that fx= lnx (usually we do not have this information). N + 1 ex Lxf xm xx– o xx– 1 xx– 2 xx– 3 31+ ex --------------------------------------------------------------------------- f x 31+ ! m 0.60– 0.40 0.60– 0.50 0.60– 0.70 0.60– 0.80 31+ e0.60 --------------------------------------------------------------------------------------------------------------------------------f 0.6 31+ ! 4 e0.60 = 0.000017 f 0.6 p.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    23 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us