2D Materials 2D Materials Polaritonics Polaritonics 2D Materials 2D

2D Materials 2D Materials Polaritonics Polaritonics 2D Materials 2D

2D Materials Polaritonics -- Quick tutorial -- Tony Low University of Minnesota, Minneapolis, USA Email: [email protected] Web: http://people.ece.umn.edu/groups/tlow/ IMA UMN, 6-10 th Feb 2017 About us Mission: Multiphysics and multiscale modeling of 2D materials electronics and photonics for computing and communication devices. Nanoelectronics Nanophotonics • 2D materials and transport physics • 2D materials polaritonics • Tunneling devices • Photodetectors • Spintronics • Reflectarray • Valleytronics • Modulators • Strain and piezoelectronics • Sensors 2 Polaritons – marrying the best of both worlds plasmon - - + + - - - - + + - - Graphene exciton + - - + - + Transition metal dichalcogenides 3 Quick overview Basics on graphene plasmons A pedagogical tutorial on graphene plasmonics starting from Maxwell eq. Graphene plasmonics A review on graphene plasmonics experiments and its applications Beyond graphene plasmonics A forward looking perspective on what’s new with other 2D materials 4 Polaritons in 2D materials Graphene Boron nitride Transition metal dichalcogenides T.Low, J.Caldwell, F. Koppens, L.M.Moreno, P. Avouris, T. Heinz et al , 5 Nature Materials (2016) Plasmon as collective electronic excitations σ( ω ) εω()1=+ χω ()1 =+ ε ω= ω = ωε (pl ) 0 i 0 External perturbation screened Collective electronic oscillation within a Thomas Fermi length i.e. plasmons 2D materials carrier concentration tunable up to 0.01 electrons per atom THz and mid-IR plasmon 6 Technologies across electromagnetic spectrum Terahertz to Mid-infrared Contains atmospheric transmission window Super high-speed wireless communication Imaging for military, security & medical Detections of molecules for bio. and chem. 7 Possible applications for graphene plasmonics IBM, Nature Nano (2012) EPFL, Science (2015) IBM, Nature Com (2013) Far field communications, e.g. modulator, reflectarray for far-field MIR U Penn, Science (2012) 8 Applications of polaritons in 2D materials T.Low, J.Caldwell, F. Koppens, L.M.Moreno, P. Avouris, T. Heinz et al , Nature Materials (2016) 9 Quick overview Basics on graphene plasmons A pedagogical tutorial on graphene plasmonics starting from Maxwell eq. Graphene plasmonics A review on graphene plasmonics experiments and its applications Beyond graphene plasmonics A forward looking perspective on what’s new with other 2D materials 10 Maxwell equations in a nutshell Maxwell equations in SI units d d d d ∂B( r , t ) ∇×E( r , t ) =− Faraday’s Law ∂t d d d d∂D( r , t ) d ∇×Hrt(,) = + Jrt (,) Ampere’s Law ∂t dd d d d ∇⋅Brt(,) =∇⋅ 0, Drt(,) = ρ (,) rt Gauss’s Law Constitutive relations d ∂ρ(r , t ) d +∇⋅J(,) r t = 0 Continuity equation ∂t ddt dddf d d Drt( , )=∫ dtdr ∫ 'ε ( r −−⋅ rt ', t ') Ert ( ', ') −∞ Fields are related by permittivity, ddt dddf d d permeability, conductivity tensors Brt( , )=∫ dtdr ∫ 'µ ( r −−⋅ rt ', t ') Hrt ( ', ') −∞ ddt dddf d d Jrt( , )=∫ dtdr ∫ 'σ ( r −−⋅ rt ', t ') Ert ( ', ') Ohm’s law −∞ 11 Maxwell equations in a nutshell Assumptions • Mediums are not spatially dispersive, i.e. local response dd d d • Linear response, monochromatic waves Ert(,)→ Er (,ω )exp( − it ω ) • No free charges or currents Maxwell equations Boundary conditions d d d d ∇×dω = ωµf ω ⋅ d ω d × − = Er(,) i () Hr (,) en( E j E i ) 0 d d ddf d d d × − = ω ∇×Hr(,)ω =− i ωε ()(,) ω ⋅ Er ω en( H j H i ) Jr (,) f d d Current at interface to be included i.e. ∇⋅ε() ω ⋅E (,) r ω = 0 where 2D materials is also described! f d d ∇⋅µ() ω ⋅H (,) r ω = 0 Constitutive ddf d d Dr(,)ω= εω () ⋅ Er (,) ω ddf d d Br(,)ω= µω () ⋅ Hr (,) ω 12 Maxwell equations in a nutshell In the isotropic case, Maxwell equations dd d d ∇×Er(,)ω = i ωµ ()(,) ω Hr ω dd d d dd d d d d ∇×Hr(,)ω =− i ωε ()(,) ω Er ω ∇×∇×Eri(,)ω = ωµω () ∇× Hr (,) ω = ωµωεω2 ()()(,) Er ω d d d d d ∇∇⋅dω −∆ d ωωµωεω = 2 d ω ∇ ⋅E(, r ω ) = 0 (Er (,)) Er (,) ()()(,) Er dd d d d d ∆Er(,)ω = − ωµωεω2 ()()(,) Er ω ∇⋅H(, r ω ) = 0 Constitutive Solution dd d d d d d d ω= εω ω dω= ω ⋅ d Dr(,) ()(,) Er Er(, ) Ek0 (, )exp( ikr ) dd d d dd d d Br(,)ω= µω ()(,) Hr ω −kEr2(,)ω = − ωµωεω 2 ()()(,) Er ω ω2 −k2 = − ω 2 µ( ω )( ε ω ) ⇒ k 2 = v2 dd d d Using ∆exp(ikr ⋅=− ) k2 exp( ikr ⋅ ) 13 Confined EM modes, TE plasmons We are interested in finding EM modes localized at the interface, 2D material z ε 2 z |E | x ε 1 This localized EM mode is reflected in the following ansatz d d d d d d Aexp( ixβ )exp(− γ z ) for z > 0 k= eβ ± ie γ A( r , t ) = d0 x z β γ < A0 exp( ix )exp( z ) for z 0 We start with the electric field for the TE plasmons d d= d = d γ β < Er1() eExzeEy 1 (,) y 11 exp( z )exp( ix ), z 0 γ= β2 − ωµε 2 d where j0 j d==− d d γ β > EreExzeE2( )y 2 ( , ) y 21 exp( z )exp( ix ), z 0 The magnetic field takes the form, d 1d∂Exz(,) d ∂ Exz (,) 1 dd Hxz(,) = e1 − e 1 =−() eieExzβ γ ( , ) 1 ωµz∂ x ∂ ωµ zx 1 1 i1 x zi 1 d 1 d d Hxz(,)=() eiβ + e γ Exz (,) 2ωµ z x 2 2 i 2 14 Confined EM modes, TE plasmons From boundary conditions = E1 E 2 γ γ 2E+ 1 EiE = σω µ2 µ 1 1 0 0 We obtain the solution for electric field E (γ+ γ −i σωµ )1 = 0 1 2 0 µ 0 Which has non zero solution if, γ+ γ − σωµ = 1 2i 0 0 This is also the pole of the Fresnel coefficients for TE waves! We can obtain plasmon dispersion in free-standing case, σωµ222 ση 22 γ= σωµ →−=− β220 →= β 22 − 0 20i 0 k 0 k 0 1 4 4 =ωεµ η = µε where k0 000, 00 . Thus the TE plasmon is σ2 η 2 β = − 0 k0 1 4 15 Confined EM modes, TM plasmons This localized EM mode is reflected in the following ansatz d d d d d d Aexp( ixβ )exp(− γ z ) for z > 0 k= eβ ± ie γ A( r , t ) = d0 x z β γ < A0 exp( ix )exp( z ) for z 0 We start with the magnetic field for the TM plasmons d d d d Hr()= eHxzeH (,) = exp(γ z )exp( ix β ), z < 0 1y 1 y 11 γ= β2 − ωµε 2 d where j0 j d==− d d γ β > Hr2() eHxzeHy 2 (,) y 22 exp( z )exp( ix ), z 0 The electric field takes the form, d 1 d d Exz(,)= −() eiβ − e γ Hxz (,) 1 ωε z x 1 1 i 1 d 1 d d Exz(,)= −() eiβ + e γ Hxz (,) 2 ωε z x 2 2 i 2 From boundary conditions γ γ γ 1HH+ 2 =0, HH −=− σ 1 H ε12 ε 21 ωε 1 1 2 i 1 εγγ γγ we obtain 1+−2 1σ 1 H =→+− 0 εγεγσ 1 2 = 0 εγωε 1 1221 ω 1 2i 1 i 16 Confined EM modes, TM plasmons We can obtain plasmon dispersion in free-standing case, σγ 2 4ε2 ω 2 2εγ−0 =→= 0 γ2i εωσ →−=− β 2 k 2 0 00iω 00 0 σ =ωεµ η = µε where k0 000, 00 . Thus the TM plasmon is 4 β =k 1 − 0 σ2 η 2 0 This is also the pole of the Fresnel coefficients for TM waves! 17 Drude conductivity The equation of motion of free electrons in metal electron momentum md d d d pd dp p= mv − −eE = , we also have d d τ dt J= − env relaxation time d d dJ J ne 2 d Hence, + = E dtτ m dd dd = −ω =− ω Assuming time dependence EE0exp( it ) , JJ 0 exp( it ), we obtain, dne2 d ne 2 i (−+iω 1 τ ) J = E →= σ 0m 0 m(ω+ i τ ) To map the relation to graphene, we use the relation, E k 2 m=F and n = F 2 π vF then , iD e2 E σ = where D ≡ F (also known as Drude weight) (ω+ i τ ) π 2 18 Graphene plasmons σ2 η 2 0 β = − 2 TE plasmons, k0 1 iD e E 4 σ = where D ≡ F (ω+ i τ ) π 2 4 TM plasmons, β =k 1 − 0 σ2 η 2 0 Lets consider some typical numbers, e2 ηµε= =Ω376.6 and | σ | =× 6.1 10 −5 S 0 0 0 4 η σ Hence, 0| | 0.02 1. This implies that, β = TE plasmons, k0 2 2kω 2 k ωπ2 2 π 2 ε ω 2 TM plasmons, β = ik 0 0 0 0 ση η η 2 2 0 0D 0 eEF eE F e2 E Dβ → ω= β F = pl π2 ε ε 2 0 2 0 19 Quick overview Basics on graphene plasmons A pedagogical tutorial on graphene plasmonics starting from Maxwell eq. Graphene plasmonics A review on graphene plasmonics experiments and its applications Beyond graphene plasmonics A forward looking perspective on what’s new with other 2D materials 20 Exciting plasmons in graphene Maxwell E Light 2µ ω = e q pl π 2ε ε 2 0 r -IR d E + - 0.2eV + - + - Terahertz to Mid Mid to to Terahertz Terahertz + - q M.Jablan et al , Phys. Rev. B (2009) F. Koppens et al , Nano Lett. (2011) L.Ju et al , Nature Nano (2011) H.Yan et al , Nature Nano (2012) J.Chen et al , Nature (2012) Understand Graphene plasmonic Z.Fei et al , Nature (2012) resonator and what we can do with it T.Low and P.Avouris, ACS Nano (2014) 21 H.Yan, T.Low et al , Nature Phot.(2013) Mid-infrared plasmons with graphene nanostructures RPA Loss function ω= ε −1 L( q , ) Im RPA energy 2µ ω = e q pl π2 ε ε 2 0 r Measuring extinction: T Z( W ,ω )= 1 − per TPar H.Yan, T.Low et al , Nature Photonics (2013) momentum T.Low and P.Avouris, ACS Nano (2014) π n − Φ − A.Y.Nikitin, T.Low, L.M.Moreno, q ~R ,(Φ= tan[4/(41 −π + π 2 )]) PRB Rapid (2014) R W 22 Mid-infrared plasmons with graphene nanostructures -1 20 Peak 1 1000cm ~ 10um ~ 30THz Width (nm) Peak 2 2500 Optical Phonon 60 Graphene on SiO Peak 3 70 2 85 First peak nd 95 Second peak 16 2 order 100 2000 Third peak nd 115 2 order mode 125 1/2 ) ω ~ q -1 ω 140 op 12 (%) 150 1500 // 170 /T 190 ω per 240 sp2 1-T 8 1000 ω sp1 Wave numbernumberWaveWave (cm (cm 4 500 0 0 1000 1500 2000 2500 3000 0 2 4 6 8 -1 Wave vector q (x10 5 cm -1 ) Wave number (cm ) Plasmon dispersion can be H.Yan, T.Low, F.Guinea et al , Nature Phot.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    70 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us