
2-1 ( 7 Aug 02) Section 2 - Input Description This section of the manual describes the input to GAMESS. The section is written in a reference, rather than tutorial fashion. However, there are frequent reminders that more information can be found on a particular input group, or type of calculation, in the 'Further Information' section of this manual. There are also a number of examples shown in the 'Input Examples' section. The order of this section is chosen to approximate the order in which most people prepare their input ($CONTRL, $BASIS/$DATA, $GUESS, and so on). The next page contains a list of all possible input groups, in the order in which they can be found in this section. 2-2 Table of Contents $CONTRL 2-6 $MOLGRF 2-80 $SYSTEM 2-14 $STONE 2-82 $BASIS 2-16 $RAMAN 2-84 $DATA/$DATAS/$DATAL 2-19 $ALPDR 2-84 $ZMAT 2-26 $MOROKM 2-85 $LIBE 2-28 $FFCALC 2-87 $SCF 2-29 $TDHF 2-88 $SCFMI 2-33 $EFRAG 2-90 $DFT 2-34 $FRAGNAME 2-92 $MP2 2-37 $FRGRPL 2-96 $CCINP 2-39 $PRTEFP 2-97 $GUESS 2-40 $DAMP 2-98 $VEC 2-42 $DAMPGS 2-99 $MOFRZ 2-42 $PCM 2-100 $STATPT 2-43 $PCMCAV 2-104 $TRUDGE 2-46 $NEWCAV 2-105 $TRURST 2-49 $IEFPCM 2-105 $FORCE 2-49 $PCMITR 2-106 $CPHF 2-52 $DISBS 2-108 $HESS 2-52 $DISREP 2-109 $GRAD 2-53 $COSGMS 2-111 $DIPDR 2-53 $SCRF 2-111 $VIB 2-53 $ECP 2-112 $MASS 2-53 $RELWFN 2-114 $IRC 2-54 $EFIELD 2-116 $VSCF 2-57 $INTGRL 2-117 $VIBSCF 2-58 $FMM 2-118 $GRADEX 2-59 $TRANS 2-118 $DRC 2-61 $CIINP 2-120 $GLOBOP 2-64 $DET/$CIDE/$GEN/$CIGEN 2-121 $SURF 2-67 $GCILST 2-124 $LOCAL 2-69 $SODET 2-125 $TWOEI 2-72 $DRT/$CIDRT 2-126 $TRUNCN 2-73 $MCSCF 2-129 $ELMOM 2-75 $MCQDPT 2-132 $ELPOT 2-75 $CISORT 2-137 $ELDENS 2-77 $GUGEM 2-137 $ELFLDG 2-77 $GUGDIA 2-137 $POINTS 2-78 $GUGDM 2-138 $GRID 2-78 $GUGDM2 2-139 $PDC 2-78 $LAGRAN 2-140 2-3 $TRFDM2 2-140 $TRANST 2-141 2-4 name function module:routine* Molecule, basis, wavefunction specification: $CONTRL chemical control data INPUTA: START $SYSTEM computer related control data INPUTA: START $BASIS basis set INPUTB: BASISS $DATA molecule, basis set INPUTB: MOLE $ZMAT coded z-matrix ZMATRX: ZMATIN $LIBE linear bend data ZMATRX: LIBE $SCF HF-SCF wavefunction control SCFLIB: SCFIN $SCFMI SCF-MI input control data SCFMI :MIINP $DFT density functional input DFT :DFTINP $MP2 2nd order Moller-Plesset MP2: MP2INP $CCTYP coupled cluster input CCSDT: CCINP $GUESS initial orbital selection GUESS: GUESMO $VEC orbitals (formatted) GUESS: READMO $MOFRZ freezes MOs during SCF runs EFPCOV:MFRZIN Potential energy surface options: $STATPT geometry search control STATPT: SETSIG $TRUDGE nongradient optimization TRUDGE: TRUINP $TRURST restart data for TRUDGE TRUDGE: TRUDGX $FORCE hessian, normal coordinates HESS: HESSX $CPHF coupled-Hartree-Fock options CPHF: CPINP $HESS force constant matrix (formatted) HESS: FCMIN $GRAD gradient vector (formatted) HESS: EGIN $DIPDR dipole deriv. matrix (formatted) HESS: DDMIN $VIB HESSIAN restart data (formatted) HESS: HSSNUM $MASS isotope selection VIBANL:RAMS $IRC intirisic reaction path RXNCRD:IRCX $VSCF vibrational SCF and MP2 VSCF :VSCFIN $VIBSCF VSCF restart data (formatted) VSCF :VGRID $DRC dynamic reaction path DRC: DRCDRV $GLOBOP Monte Carlo global optiization GLOBOP:GLOPDR $GRADEX gradient extremal path GRADEX:GRXSET $SURF potential surface scan SURF :SRFINP Interpretation, properties: $LOCAL orbital localization control LOCAL: LMOINP $TWOEI J,K integrals (formatted) LOCCD: TWEIIN $TRUNCN localized orbital truncations EFPCOV:TRNCIN $ELMOM electrostatic moments PRPLIB: INPELM $ELPOT electrostatic potential PRPLIB: INPELP $ELDENS electron density PRPLIB: INPELD $ELFLDG electric field/gradient PRPLIB: INPELF $POINTS property calculation points PRPLIB: INPPGS $GRID property calculation mesh PRPLIB: INPPGS $PDC MEP fitting mesh PRPLIB: INPPDC $MOLGRF orbital plots PARLEY:PLTMEM $STONE distributed multipole analysis PRPPOP: STNRD $RAMAN Raman intensity RAMAN :RAMANX $ALPDR alpha polar. der. (Formatted) RAMAN :ADMIN $MOROKM Morokuma energy decomposition MOROKM:MOROIN $FFCALC finite electric field FFIELD: FFLDX $TDHF time dependent HF NLO properties TDHF: TDHFX 2-5 Solvation models: $EFRAG effective fragment potentials EFINP:EFINP $FRAGNAME specific named fragment pot. EFINP:RDSTFR $FRGRPL inter-fragment repulsion EFINP:RDDFRL $PRTEFP simplified EFP generation EFINP :PREFIN $DAMP EFP multipole screening fit CHGPEN:CGPINP $DAMPGS initial guess screening params CHGPEN:CGPINP $PCM polarizable continuum model PCM :PCMINP $PCMCAV PCM cavity generation PCM :MAKCAV $NEWCAV PCM escaped charge cavity PCM :DISREP $IEFPCM PCM integral equation form. data PCM :IEFDAT $PCMITR PCM iterative IEF input PCMIEF:ITIEFIN $DISBS PCM dispersion basis set PCMDIS:ENLBS $DISREP PCM dispersion/repulsion PCMVCH:MORETS $COSGMS conductor-like screening model COSMO :COSMIN $SCRF self consistent reaction field SCRF:ZRFINP Integral and integral modification options: $ECP effective core potentials ECPLIB:ECPPAR $RELWFN relativistic correction INPUTB:RWFINP $EFIELD external electric field PRPLIB:INPEF $INTGRL format for 2e- integrals INPUTA:START $FMM fast multipole method QMFM :QFMMIN $TRANS integral transformation TRFIN :TRANS MCSCF and CI wavefunctions, and their properties: $CIINP control over CI calculation GAMESS:WFNCI $DET determinant full CI for MCSCF ALDECI:DETINP $CIDET determinant full CI ALDECI:DETINP $GEN determinant general CI for MCSCF ALGNCI:GCIINP $CIGEN determinant general CI ALGNCI:GCIINP $GCILST general determinant list ALGNCI:GCIGEN $SODET second order determinant CI FSODCI:SOCINP $DRT distinct row table for MCSCF GUGDRT:ORDORB $CIDRT distinct row table for CI GUGDRT:ORDORB $MCSCF parameters for MCSCF MCSCF :MCSCF $MCQDPT multireference pert. Theory MCQDPT:MQREAD $CISORT integral sorting GUGSRT:GUGSRT $GUGEM Hamiltonian matrix formation GUGEM :GUGAEM $GUGDIA Hamiltonian eigenvalues/vectors GUGDGA:GUGADG $GUGDM 1e- density matrix GUGDM :GUGADM $GUGDM2 2e- density matrix GUGDM2:GUG2DM $LAGRAN CI lagrangian matrix LAGRAN:CILGRN $TRFDM2 2e- density backtransformation TRFDM2:TRF2DM $TRANST transition moments, spin-orbit TRNSTN:TRNSTX * this column is more useful to programmers than to users. 2-6 $CONTRL $CONTRL group (optional) This is a free format group specifying global switches. SCFTYP together with CITYP, MPLEVL, or CCTYP here, or DFTTYP in $DFT specifies the wavefunction. You may choose from: = RHF Restricted Hartree Fock calculation (default) = UHF Unrestricted Hartree Fock calculation = ROHF Restricted open shell Hartree-Fock. (high spin, see GVB for low spin) = GVB Generalized valence bond wavefunction or OCBSE type ROHF. (needs $SCF input) = MCSCF Multiconfigurational SCF wavefunction (this requires $DET or $DRT input) = NONE indicates a single point computation, rereading a converged SCF function. This option requires that you select CITYP=GUGA, ALDET, FSOCI, or GENCI with only RUNTYP=ENERGY or TRANSITN, and with GUESS=MOREAD. Obviously, at most one of CITYP, MPLEVL, CCTYP, or DFTTYP may be chosen in any given run. CITYP = chooses CI computation after the SCF, for any SCFTYP except UHF. = NONE skips the CI. (default) = GUGA runs the Unitary Group CI package, which requires $CIDRT input. Gradients are available only for RHF, so for other SCFTYPs, you may choose only RUNTYP=ENERGY, TRUDGE, SURFACE, FFIELD, or TRANSITN. = ALDET runs the Ames Laboratory determinant full CI package, requiring $CIDET input. Use with RUNTYP=ENERGY only. = FSOCI runs a full second order CI using determinants, with RUNTYP=ENERGY only. The input is $CIDET and $SODET. = GENCI runs a determinant CI program that permits arbitrary specification of the determinants, requiring $CIGEN input. Use with RUNTYP=ENERGY only. MPLEVL = chooses Moller-Plesset perturbation theory level, after the SCF. See $MP2 and $MCQDPT input groups. = 0 skip the MP computation (default) = 2 perform second order energy correction. MP2 (aka MBPT(2)) is only implemented for RHF, UHF, ROHF, and MCSCF wavefunctions. Gradients are available for RHF and UHF, so for the others you may pick from RUNTYP=ENERGY, TRUDGE, SURFACE, or FFIELD only. CCTYP chooses a Coupled-Cluster computation after SCF, available for SCFTYP=RHF. See also the $CCINP group. = NONE skips CC computation (default). 2-7 $CONTRL = LCCD perform a coupled-cluster calculation using the linearized coupled-cluster method with double excitations. = CCD perform a CC calculation using the coupled-cluster method with double excitations. = CCSD perform a CC calculation using the coupled-cluster method with single and double excitations. = CCSD(T) in addition to the CCSD run, the non-iterative triples corrections are calculated to give the standard CCSD[T] and CCSD(T) energies. = R-CC in addition to standard CCSD, CCSD[T], and CCSD(T) calculations, renormalized R-CCSD[T] and R-CCSD(T) calculations are performed. The cost of the renormalized calculations equals standard CCSD(T). = CR-CC in addition to CCSD, CCSD[T], CCSD(T), R-CCSD[T], and R-CCSD(T) calculations, the completely renormalized CR- CCSD[T] and CR-CCSD(T) enegies are computed. The cost of CR-CCSD[T] and CR-CCSD(T) calculations, in their noniterative triples corrections portion, is twice the standard [T] and (T) corrections. The most reasonable choices are CCSD, CCSD(T), or CR-CC. Analytic gradients are not available, so use CCTYP only for RUNTYP=ENERGY, TRUDGE, SURFACE, or maybe FFIELD. Any publication describing the results of CC calculations obtained using GAMESS should give reference to P. Piecuch, S.A. Kucharski, K. Kowalski, and M. Musial, Comput.Phys. Commun., in press, 2002 For more information about the R-CCSD(T) and CR-CCSD(T) methods, see Section 4, 'Further Information'. RUNTYP specifies the type of computation, for example at a single geometry point: = ENERGY Molecular energy. (default) = GRADIENT Molecular energy plus gradient. = HESSIAN Molecular energy plus gradient plus second derivatives, including harmonic vibrational analysis. See the $FORCE input group. multiple geometry options: = OPTIMIZE Optimize the molecular geometry using analytic energy gradients. See $STATPT. = TRUDGE Non-gradient total energy minimization.
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages140 Page
-
File Size-