An Introduction to Algebraic Geometry by Kenj I Uen O

An Introduction to Algebraic Geometry by Kenj I Uen O

Selected Title s i n Thi s Serie s 166 Kenj i Ueno , A n introductio n t o algebrai c geometry , 199 7 165 V . V . Ishkhanov , B . B . Lur'e , an d D . K . Faddeev , Th e embeddin g proble m i n Galois theory, 199 7 164 E . I . Gordon , Nonstandar d method s i n commutativ e harmoni c analysis , 199 7 163 A . Ya . Dorogovtsev , D . S . Silvestrov , A . V . Skorokhod , an d M . I . Yadrenko , Probability theory : Collectio n o f problems, 199 7 162 M . V . Boldin , G . I . Simonova , an d Yu . N . Tyurin , Sign-base d method s i n linea r statistical models , 199 7 161 Michae l Blank , Discretenes s an d continuit y i n problems o f chaotic dynamics , 199 7 160 V . G . OsmolovskiT , Linea r an d nonlinea r perturbation s o f the operato r div , 199 7 159 S . Ya . Khavinson , Bes t approximatio n b y linea r superposition s (approximat e nomography), 199 7 158 Hidek i Omori , Infinite-dimensiona l Li e groups, 199 7 157 V . B . Kolmanovski T an d L . E . Shaikhet , Contro l o f systems wit h aftereffect , 199 6 156 V . N . Shevchenko , Qualitativ e topic s i n intege r linea r programming , 199 7 155 Yu . Safaro v an d D . Vassiliev , Th e asymptoti c distributio n o f eigenvalue s o f partia l differential operators , 199 7 154 V . V . Prasolo v an d A . B . Sossinsky , Knots , links , braids an d 3-manifolds . A n introduction t o the ne w invariants i n low-dimensiona l topology , 199 7 153 S . Kh . Aranson , G . R . Belitsky , an d E . V . Zhuzhoma , Introductio n t o th e qualitative theor y o f dynamical system s o n surfaces , 199 6 152 R . S . Ismagilov , Representation s o f infinite-dimensional groups , 199 6 151 S . Yu . Slavyanov , Asymptoti c solution s o f the one-dimensiona l Schrodinge r equation , 1996 150 B . Ya . Levin , Lecture s o n entir e functions , 199 6 149 Takash i Sakai , Riemannia n geometry , 199 6 148 Vladimi r I . Piterbarg , Asymptoti c method s i n the theor y o f Gaussia n processe s an d fields, 199 6 147 S . G . Gindiki n an d L . R . Volevich , Mixe d proble m fo r partia l differentia l equation s with quasihomogeneou s principa l part , 199 6 146 L . Ya . Adrianova , Introductio n t o linea r system s o f differential equations , 199 5 145 A . N . Andriano v an d V . G . Zhuravlev , Modula r form s an d Heck e operators, 199 5 144 O . V . Troshkin , Nontraditiona l method s i n mathematica l hydrodynamics , 199 5 143 V . A . Malyshe v an d R . A . Minlos , Linea r infinite-particl e operators , 199 5 142 N . V . Krylov , Introductio n t o the theor y o f diffusio n processes , 199 5 141 A . A . Davydov , Qualitativ e theor y o f control systems , 199 4 140 Aizi k I . Volpert , Vital y A . Volpert , an d Vladimi r A . Volpert , Travelin g wav e solutions o f paraboli c systems , 199 4 139 I . V . Skrypnik , Method s fo r analysi s o f nonlinear ellipti c boundary valu e problems , 199 4 138 Yu . P . Razmyslov , Identitie s o f algebras an d thei r representations , 199 4 137 F . I . Karpelevic h an d A . Ya . Kreinin , Heav y traffi c limit s fo r multiphas e queues , 199 4 136 Masayosh i Miyanishi , Algebrai c geometry , 199 4 135 Masar u Takeuchi , Moder n spherica l functions , 199 4 134 V . V . Prasolov , Problem s an d theorem s i n linea r algebra , 199 4 133 P . I . Naumki n an d I . A . Shishmarev , Nonlinea r nonloca l equation s i n the theory o f waves, 199 4 132 Hajim e Urakawa , Calculu s o f variations an d harmoni c maps , 199 3 131 V . V . Sharko , Function s o n manifolds : Algebrai c an d topologica l aspects , 199 3 130 V . V . Vershinin , Cobordism s an d spectra l sequences , 199 3 129 Mitsu o Morimoto , A n introductio n t o Sato' s hype r functions, 199 3 (Continued in the back of this publication) This page intentionally left blank An Introduction t o Algebraic Geometr y This page intentionally left blank 10.1090/mmono/166 Translations o f MATHEMATICAL MONOGRAPHS Volume 16 6 An Introduction t o Algebraic Geometr y Kenji Ueno Translated b y Katsumi Nomiz u ^^^,^\Q America n Mathematical Societ y Providence, Rhode Islan d <$°^5eS^ Editorial Boar d Shoshichi Kobayash i (Chair ) Masamichi Takesak i ix m m M A P I DAISU KIK A NYUMO N (An introductio n t o algebrai c geometry ) by Kenj i Uen o Copyright © 199 5 b y Kenj i Uen o Originally publishe d i n Japanes e b y Iwanam i Shoten , Publishers , Tokyo , 199 5 Translated fro m th e Japanes e b y Katsum i Nomiz u 2000 Mathematics Subject Classification. Primar y 14-01 ; Secondary 14B05 , 14C40 , 14G10 , 14H52 , 14H55 , 14K25 . ABSTRACT. Thi s boo k offer s a n invitatio n t o algebrai c geometr y to student s a t a n earl y stage an d introduces the m t o th e subjec t wit h a s fe w prerequisite s a s possible . A historica l an d intuitiv e treatment explain s the spiri t o f algebrai c geometr y wit h numerou s examples . Library o f Congres s Cataloging-in-Publicatio n Dat a Ueno, Kenji , 1945 - [Daisu kik a nyumon , English ] An introductio n t o algebrai c geometr y / Kenj i Uen o ; translated b y Katsumi Nomizu . p. cm . — (Translation s o f mathematical monograph s ; v. 166 ) Includes bibliographica l reference s an d index . ISBN 0-8218-0589- 4 (alk . paper ) 1. Geometry , Algebraic . I . Title . II . Serie s QA564.U3713 199 7 516.3'5—dc21 97-303 0 CIP AMS softcove r ISB N 978-0-8218-1144- 3 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s acting fo r them, ar e permitted t o mak e fai r us e o f the material , suc h a s to cop y a chapter fo r us e in teachin g o r research . Permissio n i s grante d t o quot e brie f passage s fro m thi s publicatio n i n reviews, provided th e customar y acknowledgmen t o f the sourc e i s given . Republication, systemati c copying , o r multiple reproduction o f any material i n this publicatio n is permitte d onl y unde r licens e fro m th e America n Mathematica l Society . Request s fo r suc h permission shoul d b e addressed t o the Acquisition s Department, America n Mathematica l Society , 201 Charle s Street , Providence , Rhod e Islan d 02904-2294 , USA . Request s ca n als o b e mad e b y e-mail t o [email protected] . © 199 7 by the America n Mathematica l Society . Al l right s reserved . Reprinted wit h correction s b y the America n Mathematica l Society , 2008 . The America n Mathematica l Societ y retains al l right s except thos e grante d t o th e Unite d State s Government . Printed i n the Unite d State s o f America . @ Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . 10 9 8 7 6 5 4 3 1 3 1 2 1 1 1 0 09 0 8 Contents Preface t o the Englis h Edition i x Translator's Not e x Preface x i Chapter 1 Invitation to Algebrai c Geometr y 1 §1.1 Th e birth o f geometry 1 (a) Euclidea n geometr y 1 (b) Th e theory o f conies o f Apollonius 2 §1.2 Coordinat e geometr y 2 (a) Th e birth o f coordinate geometry 2 (b) Euclidea n geometr y and affin e geometr y 4 §1.3 Projectiv e geometr y 9 (a) Th e birth o f projective geometr y 9 (b) Th e projective plan e 1 3 §1.4 Introductio n o f complex numbers 2 0 (a) Th e introduction o f complex numbers 2 0 (b) Comple x plane curve s 2 3 §1.5 Th e birth o f algebraic geometr y 3 0 (a) Plan e curve s and intersection s 3 0 (b) Dua l curves and Pliicker' s formul a 3 7 (c) Th e developmen t o f algebraic geometr y 4 3 Problems 4 6 Grothendieck's schem e theory 4 8 Chapter 2 Projective Spac e and Projectiv e Varietie s 4 9 §2.1 Projectiv e line s 4 9 (a) Th e Riemann spher e and projectiv e line s 4 9 (b) Projectiv e transformation s 5 3 (c) Functio n field s 5 6 §2.2 Th e projective plan e and plan e curve s 5 7 (a) Th e projective plan e 5 7 (b) Dualit y an d projectiv e transformation s 6 0 (c) Th e functio n field o f the projective plan e 6 4 (d) Plan e curve s 6 4 (e) Rationa l mapping s an d algebrai c morphisms 6 8 §2.3 Plan e curve s 7 2 (a) Tangent s and singula r point s 7 2 (b) Th e intersectio n theor y fo r plane curve s 8 5 viii CONTENT S (c) Functio n field s fo r plan e curve s 8 8 §2.4 Projectiv e varietie s 9 1 (a) Projectiv e spac e 9 1 (b) Projectiv e set s and varietie s 9 3 (c) Projectiv e set s and homogeneou s ideal s 9 7 (d) Dimensio n o f projective varietie s an d functio n field s 10 2 (e) Singularities , nonsingula r point s an d tangent hyperplane s 10 7 (f) Th e product o f projective space s 11 1 §2.5 Th e resolutio n o f singularities 11 6 (a) Blowing-u p o n the projectiv e plan e 11 7 (b) Resolutio n o f singularities o f plane curve s 12 0 (c) Resolutio n o f singularities fo r a surfac e 12 7 Problems 13 1 Chapter 3 Algebraic Curve s 13 5 §3.1 Th e Riemann-Roc h theore m 13 5 (a) Divisor s 13 5 (b) Differentia l form s an d the genu s o f algebraic curve s 14 2 (c) Th e Riemann-Roc h theore m 14 5 §3.2 Geometr y o f algebraic curves 14 7 (a) Th e Hurwitz formul a 14 7 (b) Imbeddin g int o the projectiv e spac e 15 1 §3.3 Ellipti c curve s 15 5 (a) Curve s o f genus 1 15 5 (b) Th e group structure o n a n ellipti c curv e 16 1 §3.4 Congruenc e zet a function s fo r algebrai c curve s 16 6 Problems 17 7 Chapter 4 The Analytic Theor y o f Algebraic Curve s 17 9 §4.1 Close d Rieman n surface s 17 9 §4.2 Perio d matrice s 18 9 §4.3 Jacobia n varietie s 19 7 Problems 20 6 Appendix Commutativ e Ring s an d Field s 20 7 §A.l Integer s an d congruenc e 20 7 §A.2 Th e polynomial rin g Q[x] 21 3 §A.3 Commutativ e ring s and field s 21 9 §A.4 Finit e field s 22 8 §A.5 Localizatio n an d loca l rings 23 3 References 23 9 Index 24 1 Index fo r Definitions , Theorems , etc.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us