Turbulence Examined in the Frequency-Wavenumber Domain*

Turbulence Examined in the Frequency-Wavenumber Domain*

Turbulence examined in the frequency-wavenumber domain∗ Andrew J. Morten Department of Physics University of Michigan Supported by funding from: National Science Foundation and Office of Naval Research ∗ Arbic et al. JPO 2012; Arbic et al. in review; Morten et al. papers in preparation Andrew J. Morten LOM 2013, Ann Arbor, MI Collaborators • University of Michigan Brian Arbic, Charlie Doering • MIT Glenn Flierl • University of Brest, and The University of Texas at Austin Robert Scott Andrew J. Morten LOM 2013, Ann Arbor, MI Outline of talk Part I{Motivation (research led by Brian Arbic) • Frequency-wavenumber analysis: {Idealized Quasi-geostrophic (QG) turbulence model. {High-resolution ocean general circulation model (HYCOM)∗: {AVISO gridded satellite altimeter data. ∗We used NLOM in Arbic et al. (2012) Part II-Research led by Andrew Morten • Derivation and interpretation of spectral transfers used above. • Frequency-domain analysis in two-dimensional turbulence. • Theoretical prediction for frequency spectra and spectral transfers due to the effects of \sweeping." {moving beyond a zeroth order approximation. Andrew J. Morten LOM 2013, Ann Arbor, MI Motivation: Intrinsic oceanic variability • Interested in quantifying the contributions of intrinsic nonlinearities in oceanic dynamics to oceanic frequency spectra. • Penduff et al. 2011: Interannual SSH variance in ocean models with interannual atmospheric forcing is comparable to variance in high resolution (eddying) ocean models with no interannual atmospheric forcing. • Might this eddy-driven low-frequency variability be connected to the well-known inverse cascade to low wavenumbers (e.g. Fjortoft 1953)? • A separate motivation is simply that transfers in mixed ! − k space provide a useful diagnostic. Andrew J. Morten LOM 2013, Ann Arbor, MI Oceanic analysis regions • Regions used to analyze AVISO gridded altimeter data and HYCOM output. • Shown against snapshots of SSH (cm) from HYCOM and SSH anomaly (cm) from AVISO. 200 60°N 40°N 100 20°N 0° 0 20°S -100 40°S 60°S -200 0° 40°E 80°E 120°E 160°E 160°W 120°W 80°W 40°W 0° 60°N 50 40°N 20°N 0° 0 20°S 40°S 60°S -50 0° 40°E 80°E 120°E 160°E 160°W 120°W 80°W 40°W 0° Andrew J. Morten LOM 2013, Ann Arbor, MI 2 Frequency spectra of surface streamfunction variance 1 2 and kinetic energy jr 1j (Arbic et al. 2012 JPO) AVISO NLOM (a) ω spectrum of ψ2 (a) ω spectrum of ψ2 1 1 15 15 10 10 13 13 10 10 I Flat spectra at low 11 Midlat SE Pacific 11 Midlat SE Pacific 10 Highlat SE Pacific 10 Highlat SE Pacific frequencies as in Agulhas Agulhas 9 9 10 Malvinas 10 Malvinas Gulf Stream Gulf Stream previous studies 7 Kuroshio 7 Kuroshio 10 10 −3 −2 −1 0 1 −3 −2 −1 0 1 10 10 10 10 10 10 10 10 10 10 (e.g. Richman et ω (days−1) ω (days−1) (b) ω spectrum of |∇ ψ |2 (b) ω spectrum of |∇ ψ |2 al. 1977, Wunsch 1 1 6 6 10 10 2009, 2010) 4 4 10 10 Midlat SE Pacific Midlat SE Pacific Highlat SE Pacific Highlat SE Pacific 2 2 10 Agulhas 10 Agulhas Malvinas Malvinas Gulf Stream Gulf Stream 0 Kuroshio 0 Kuroshio 10 10 −3 −2 −1 0 1 −3 −2 −1 0 1 10 10 10 10 10 10 10 10 10 10 ω (days−1) ω (days−1) Andrew J. Morten LOM 2013, Ann Arbor, MI Spectral transfers of upper layer kinetic energy versus wavenumber at fixed frequency Spectral transfers vs. k QG model Agulhas HYCOM and AVISO (a) QG T (K,ω) vs K at fixed ω KE,1 (a) HYCOM Agulhas T (K,ω) vs K at fixed ω 4 KE,1 3 x 10 ω =0.0012 5 1824 days ω /U))] =0.0105 608 days d 2 ω=0.1001 68 days 0 ω=0.9995 28 days 14 days )(rad/(L ω d =3.1416 1 −5 −4 −3 −2 −1 0 (nW/kg)/[(rad/day)(rad/km)] 10 10 10 10 10 )/[(rad/L d 0 /L ω ω 3 4 (b) AVISO Agulhas T (K, ) vs K at fixed x 10 KE,1 (U −1 5 5880 days −1 0 1 2 10 10 10 10 653 days 68 days 0 28 days (b) QG T(K) integrated over all ω 14 days 600 T −5 KE,1 −4 −3 −2 −1 0 400 T (nW/kg)/[(rad/day)(rad/km)] 10 10 10 10 10 KE,2 )] d T (c) Agulhas T (K), integrated over all ω 200 APE KE,1 T forcing 2000 HYCOM 0 T )/[(rad/L friction AVISO d 1000 /L 3 −200 Residual (U 0 −400 (nW/kg)/[(rad/km)] −1000 −600 −4 −3 −2 −1 0 −1 0 1 2 10 10 10 10 10 10 10 10 10 K (rad/L ) K (rad/km) d Andrew J. Morten LOM 2013, Ann Arbor, MI Spectral transfers of upper layer kinetic energy versus frequency at fixed wavenumber Spectral transfers vs. ! QG model Highlat SE Pac HYCOM & AVISO (a) QG T (K,ω) vs ω at fixed K KE,1 (a) HYCOM Highlat SE Pacific T (K,ω) vs ω at fixed K KE,1 4 1000 K=0.1 2132 km K=0.2 /U))] 3 919 km d K=0.5 500 430 km 2 K=1 117 km K=3 0 56 km )(rad/(L d 1 −500 −4 −2 0 0 (nW/kg)/[(rad/day)(rad/km)] 10 10 10 )/[(rad/L d /L ω ω 3 (b) AVISO Highlat SE Pacific T (K, ) vs at fixed K −1 KE,1 (U −2 2115 km −4 −2 0 2 2000 10 10 10 10 734 km 351 km 1000 114 km (b) QG T(ω) integrated over all K 57 km 15 0 T KE,1 −4 −2 0 10 T (nW/kg)/[(rad/day)(rad/km)] 10 10 10 KE,2 /U))] T (c) Highlat SE Pacific T (ω), integrated over all K d 5 APE KE,1 T forcing 30 HYCOM 0 T friction 20 AVISO )/[(rad/(L d −5 Residual /L 10 3 (U −10 0 (nW/kg)/[(rad/day)] −10 −15 −4 −3 −2 −1 0 1 −4 −2 0 2 10 10 10 10 10 10 10 10 10 10 ω (rad/(L /U)) ω (rad/day) d Andrew J. Morten LOM 2013, Ann Arbor, MI Derivation of spatial transfers • Reminder of derivation of energy and enstrophy spatial transfers @ r2 + J = F + D (1) @t + @ − k2 ~ + J~ = F~ + D~ (2) @t + @ j ~(~k; t)j2 Energy: k2 − Re( ~∗J~) = −Re( ~∗F~) − Re( ~∗D~ ) (3) @t 2 and @ j ~j2 Enstrophy: k4 − Re(k2 ~∗J~) = −Re(k2 ~∗F~) − Re(k2 ~∗D~ ) @t 2 (4) Andrew J. Morten LOM 2013, Ann Arbor, MI Time-frequency analysis needed for temporal transfers Choose either: • Short-time (moving window) Fourier transform: Z τ+T =2 t − τ −i!t f^(τ; !; T ) := σ( )[f (t) − ftrend (t; τ; T )]e dt (5) τ−T =2 T dfc @ =) (τ; !) = i!f^ + f^(τ; !) (6) dt @τ • Wavelet: Z 1 f^(τ; !) := f (t)j!j1=2W ((t − τ)!)dt (7) −∞ dfc @ =) (τ; !) = f^(τ; !) (8) dt @τ Andrew J. Morten LOM 2013, Ann Arbor, MI Derivation of temporal transfers • Derivation of energy and enstrophy temporal transfers: \@ − k2 ~ + J~^ = F~^ + D~^ (9) @t + @ − k2 ~^ + (−i!k2 ~^) +J~^ = F~^ + D~^ (10) @τ | {z } only for STFT + d j ~^(~k; τ; !)j2 Energy: k2 − Re( ~^∗J~^) = −Re( ~^∗F~^) − Re( ~^∗D~^ ) dτ 2 (11) and d j ~^j2 Enstrophy: k4 − Re(k2 ~^∗J~^) = −Re(k2 ~^∗F~^) − Re(k2 ~^∗D~^ ) dτ 2 (12) Andrew J. Morten LOM 2013, Ann Arbor, MI Model choices • 2D Navier-Stokes equation (modified) @ r2 + J( ; r2 ) = F − ν r2 + D + D (13) @t 0 hyper hypo • streamfunction, • jacobian, J(·; ·) • Ekman drag, ν0 = 0, for this talk. • exponential wavenumber filter (hyper-)viscosity, Dhyper • " " filter (hypo-)viscosity, Dhypo • forcing, F , chosen to be localized about wavenumber kF and frequency !F . Andrew J. Morten LOM 2013, Ann Arbor, MI Three different forcing frequencies 15 15 15 x 10 Forcing Spectral Density (k) x 10 Forcing Spectral Density (k) x 10 Forcing Spectral Density (k) 2.5 2.5 2.5 2 2 2 1.5 1.5 1.5 1 1 1 0.5 0.5 0.5 Forcing Spectral Density Forcing Spectral Density Forcing Spectral Density 0 0 0 0 1 2 0 1 2 0 1 2 10 10 10 10 10 10 10 10 10 K K K mid kF mid kF mid kF ω ω ω 19 Forcing Spectral Density ( ) 19 Forcing Spectral Density ( ) 18 Forcing Spectral Density ( ) x 10 x 10 x 10 9 7 15 8 6 7 5 6 10 5 4 4 3 3 5 2 2 Forcing Spectral Density Forcing Spectral Density Forcing Spectral Density 1 1 0 0 0 −2 −1 0 −2 −1 0 −2 −1 0 10 10 10 10 10 10 10 10 10 ω ω ω high !F mid !F low !F Andrew J. Morten LOM 2013, Ann Arbor, MI Model choices: spectrally localized forcing In order to allow for statistically homogeneous isotropic turbulence... Start with Maltrud-Vallis (stochastic) forcing, ~ p 2 iφn F~MV (k; tn) = f0 1 − c e + cF~MV (tn−1); (14) Shift the power spectrum peak to !F and −!F ~ ~ i!F tn ~ + ~ −i!F tn ~ − ~ F (k; tn) = e FMV (k; tn) + e FMV (k; tn) (15) Andrew J. Morten LOM 2013, Ann Arbor, MI Typical (~x; t) and r2 snapshots; and forcing Streamfunction snapshot Vorticity snapshot 0.2 100 1000 1000 80 900 0.15 900 60 800 800 0.1 40 700 700 0.05 600 600 20 y 500 0 y 500 0 −20 400 −0.05 400 300 300 −40 −0.1 200 200 −60 −0.15 100 100 −80 −0.2 −100 0 200 400 600 800 1000 0 200 400 600 800 1000 x x Forcing snapshot 1000 0.015 900 0.01 800 700 0.005 600 y 500 0 400 −0.005 300 200 −0.01 100 −0.015 0 200 400 600 800 1000 x Andrew J.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    29 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us