1: Bisectors, Medians, and Altitudes Perpendicular Lines: Bisect

1: Bisectors, Medians, and Altitudes Perpendicular Lines: Bisect

Date: _____________________________ Section 5 – 1: Bisectors, Medians, and Altitudes Notes – Part A Perpendicular Lines: Bisect: Perpendicular Bisector: a line, segment, or ray that passes through the __________________ of a side of a ________________ and is perpendicular to that side Points on Perpendicular Bisectors Theorem 5.1: Any point on the perpendicular bisector of a segment is _____________________ from the endpoints of the _________________. Example: Concurrent Lines: _____________ or more lines that intersect at a common _____________ Point of Concurrency: the point of ___________________ of concurrent lines Circumcenter: the point of concurrency of the _____________________ bisectors of a triangle 1 Circumcenter Theorem: the circumcenter of a triangle is equidistant from the ________________ of the triangle Example: Points on Angle Bisectors Theorem 5.4: Any point on the angle bisector is ____________________ from the sides of the angle. Theorem 5.5: Any point equidistant from the sides of an angle lies on the ____________ bisector. Incenter: the point of concurrency of the angle ________________ of a triangle Incenter Theorem: the incenter of a triangle is _____________________ from each side of the triangle Example: 2 Example #1: RI bisects ∠SRA. Find the value of x and m∠ IRA . Example #2: QE is the perpendicular bisector of MU . Find the value of m and the length of ME . Example #3: EA bisects ∠DEV . Find the value of x if m∠ DEV = 52 and m∠ AEV = 6x – 10. 3 Example #4: Find x and EF if BD is an angle bisector. Example #5: In ∆DEF, GI is a perpendicular bisector. a.) Find x if EH = 19 and FH = 6x – 5. b.) Find y if EG = 3y – 2 and FG = 5y – 17. c.) Find z if m∠EGH = 9z. 4 Date: _____________________________ Section 5 – 1: Bisectors, Medians, and Altitudes Notes – Part B Median: a segment whose endpoints are a ______________ of a triangle and the ___________________ of the side opposite the vertex Centroid: the point of concurrency for the ________________ of a triangle Centroid Theorem: The centroid of a triangle is located _________ of the distance from a ____________ to the __________________ of the side opposite the vertex on a median. Example: Example #1: Points S, T, and U are the midpoints of DE, EF , and DF , respectively. Find x. 1 Altitude: a segment from a _______________ to the line containing the opposite side and _______________________ to the line containing that side Orthocenter: the intersection point of the ____________________ Example #2: Find x and RT if SU is a median of ∆RST. Is SU also an altitude of ∆RST? Explain. Example #3: Find x and IJ if HK is an altitude of ∆HIJ. 2 Date: _____________________________ Section 5 – 2: Inequalities and Triangles Notes Definition of Inequality: For any real numbers a and b, ____________ if and only if there is a positive number c such that _________________. Example: Exterior Angle Inequality Theorem: If an angle is an ________________ angle of a triangle, then its measures is ________________ than the measure of either of its ________________________ remote interior angles. Example: Example #1: Determine which angle has the greatest measure. Example #2: Use the Exterior Angle Inequality Theorem to list all of the angles that satisfy the stated condition. a.) all angles whose measures are less than m∠8 b.) all angles whose measures are greater than m∠2 1 Theorem 5.9: If one side of a triangle is ________________ than another side, then the angle opposite the longer side has a _______________ measure than the angle opposite the shorter side. Example #3: Determine the relationship between the measures of the given angles. a.) ∠∠RSU, SUR b.) ∠∠TSV, STV c.) ∠∠RSV, RUV Theorem 5.10: If one angle of a triangle has a ________________ measure than another angle, then the side opposite the greater angle is ________________ than the side opposite the lesser angle. Example #4: Determine the relationship between the lengths of the given sides. a.) AE, EB b.) CE, CD c.) BC, EC 2 Date: _____________________________ Section 5 – 4: The Triangle Inequality Notes Triangle Inequality Theorem: The sum of the lengths of any two sides of a _________________ is _________________ than the length of the third side. Example: Example #1: Determine whether the given measures can be the lengths of the sides of a triangle. a.) 2, 4, 5 b.) 6, 8, 14 Example #2: Find the range for the measure of the third side of a triangle given the measures of two sides. a.) 7 and 9 b.) 32 and 61 1 Theorem 5.12: The perpendicular segment from a ____________ to a line is the _________________ segment from the point to the line. Example: Corollary 5.1: The perpendicular segment from a point to a plane is the ________________ segment from the point to the plane. Example: 2 .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us