Nuclear Charge Radius Determination of the Halo Nucleus Be-11

Nuclear Charge Radius Determination of the Halo Nucleus Be-11

Nuclear charge radius determination of the halo nucleus Be-11 Monika Žáková, Johannes Gutenberg-Universität Mainz 6 7 2 3 1 1 1 M. Bissell , K. Blaum , Ch. Geppert , M. Kowalska , J. Krämer , A. Krieger , R. Neugart , W. Nörtershäuser1,2 , R. Sanchez1, F. Schmidt-Kaler4, D. Tiedemann1, D. Yordanov7, C. Zimmermann5 1 Johannes Gutenberg-Universität Mainz, Germany Laser Spectroscopy of Highly Charged 2 GSI Darmstadt, Germany Ions and Exotic Radioactive Nuclei 3 CERN (Helmholtz Young Investigators Group) 4 Universität Ulm, Germany 5 Eberhard-Karls Universität Tübingen, Germany 6 Instituut voor Kern- en Stralingsfysica, Leuven 7Max Planck Institut für Kernphysik, Heidelberg http://www.kernchemie.uni-mainz.de/laser/ Outline ► Halo Nuclei ► Isotope Shift ► Collinear Laser Spectroscopy ► Results Halo Nuclei 3 Isotope Shift → Nuclear Charge Radius ► Charge radius – proton distribution ► Nuclear model – independent Isotop 1 Δν Absorption IS spectra Isotop 2 ΔνIS = ΔνMS + ΔνFS 4 Isotope Shift ΔνIS = ΔνMS + ΔνFS meausrements calculations charge radius ≈10 GHz ≈1 MHz ► Calculations up to three e- system Be+ Z.-C. Yan et al., Phys. Rev. Lett., 100, 243002 (2008) M. Puchalski, K. Pachucki Phys. Rev A 78, 052511 (2008) 5 Isotope Shift ΔνIS = ΔνMS + ΔνFS meausrements calculations charge radius ≈10 GHz ≈1 MHz r 2 Δν = 2πZeΔ|ψ(0)|2 2 FS 3 δ r V(r) field shift coefficient C - calculations Z.-C. Yan et al., Phys. Rev. Lett., 100, 243002 (2008) M. Puchalski, K. Pachucki Phys. Rev A 78, 052511 (2008) 6 6He, 8He ► 6He, 8He – isotope shifts measurements in magneto optical trap, Argonne National Lab, GANIL P. Müller et al., Phys. Rev. Lett., 99, 252501 (2007) L.-B. Wang et al., Phys. Rev. Lett., 93, 142501 (2004): 1.912(18) fm for He-6 7 Beryllium Measurements 8 Where did we measure? RADIOACTIVE LABORATORY 1 GeV PROTONS ROBOT ►1GeV Proton Beam from PSB GPS Separator ►Uranium-Carbite Target CONTROL ROOM ►GPS Mass Separator REX-ISOLDE EXPERIMENTAL HALL ►COLLAPS Beam-Line COLLAPS Beam-Line ISOLTRAP 9 Collinear Laser Spectroscopy Ion Beam ► Laser Frequency is Fixed Ekin~60 keV Deflection ► Doppler Tuning Deceleration Collinear + (Doppler-tuning) Laser Beam + Photomultipliers νc = ν0 ⋅ γ ⋅(1+ β) etection)(Signal D acceleration voltage / kV 0 15 30 45 60 δE =( δ mv /2mv 2 = ) v δ const = k2 T 2 δv = eUm 10 Experimental Setup at COLLAPS ► Laser Frequency is Fixed Ion Beam ► Doppler Tuning Ekin~60 keV Collinear Deflection Deceleration Laser Beam + (Doppler-tuning) + νc = ν0 ⋅ γ ⋅(1+ β) Photomultipliers (Signal Detection) ► Limitation – knowledge of ion velocity 2eU ΔU/U ≈ 10-4 β ≈ 2 ⇒ΔνIS ≈ 18 MHz 0cm IS (Be): 5-15 MHz 11 Two Laser Beams Ion Beam Ekin~60 keV νc = ν0 ⋅ γ ⋅(1+ β) Deflection Deceleration νa = ν0 ⋅γ⋅(1− ) β (Doppler-tuning) Collinear + 2 2 2 2 Laser Beam + =νc ⋅ ν νa ⋅0 γ ⋅(1 β −) 0 = ν νc = ν0 ⋅ γ⋅()1 +β Anti-collinear Laser Beam Photomultipliers etection)(Signal D ν a =ν 0 ⋅γ ⋅ (1− β ) ► Laser Frequency easurementM Δν/ν < 10-9 ► Dedicteda laser system 12 Experimental Setup Anti-collinear Laser Setup Collinear Laser Setup 13 Laser Spectroscopy Setup Anti-collinear Laser Setup BBO Collinear Laser Setup BBO 14 Laser Spectroscopy Setup 15 Laser Spectroscopy Setup 16 Energy Level Scheme 17 2s1/2 –2p1/2 Transition 4500 7Be (D1 line) 4000 Fitting … 3500 ► Voigt Profile 3000 2500 2000 Counts/ s 1500 1000 1800 10Be (D1 line) 500 1600 -50 -40 -30 -20 -10 0 10 20 1400 150 11Be (D1 line) 1200 140 1000 800 130 Counts/ s 600 120 400 200 110 Counts/ s Counts/ 0 -100 -96 -92 -88 -84 -80 -76 100 Voltage [V] 90 -200 -175 -150 -125 -100 -75 -50 Voltage [V] Energy Level Scheme 19 2s1/2 –2p3/2 Transition 20 Nuclear Charge Radius 2 2πZe 2 2 δν = δνMS + Δ|ψ(0)| δ rc IS 3 δνFS A 2 2⎛ 9 ⎞ (r Be= )δr+ r ⎜ Be⎟ c c c ⎝ ⎠ 9 ( Be )rc 2.519= (12)(Electron Scattering)fm Phys. A, uc.J. A. Jansen, N188, 337-352, (1972). 21 Radius of one Neutron-Halo 11Be Simple frozen core two-body model: ► 11Be consists of the 10Be core and halo-neutron ► Difference in proton distribution attributed to influence of the halo-neutron ure:classical pict 2 2 11 2 10 Rcentermass(= Be rc ) −c r ( Be ) 10 ercent (m Be ) assof m r =R ⋅ halo−Neutron centermass(m Neutron ) 22 Radius of one Neutron-Halo 11Be ► Pure center-of-mass motion 23 Radius of one Neutron-Halo 11Be ► Pure center-of-mass motion ► Additional contribution: Core polarization (intrinsic structure of 10Be) Suggestion by I. Tanihata: Combine Charge- and Matter-Radii with B(E1) to disentangle core excitation from center-of-mass motion. 24 Conclusion & Outlook Current status: ► Isotope shift of 7,9,10,11Be+ determined with ~ 1 MHz precision ► Determination of charge radii with ~1% uncertainty Near Future: ► Isotope shift measurement of 12Be using collinear laser spectroscopy with an improved detection system 25 Thank You for Attention Beam-time Crew 26 Beryllium ion production • RILIS (ISOLDE laser ion source) Isotope Half life Yield (ions/μC) auto-ionizing state 7 21 Be 53.12 d 1.4E+10 2p S0 10Be 1.51E+6 a 6.0E+09 IP ~ 9 eV 11Be 13.8 s 7.0E+06 297.3 nm 12Be 23.6 ms 1.5E+03 2s2p 1P 14Be 4.35 ms 4.0E+00 1 234.9 nm 21 2s S0 Efficiency: ~ 7 % 27 Commercial Frequency Comb 28.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    28 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us