Chapter 4 Multivariate Distributions

Chapter 4 Multivariate Distributions

RS – 4 – Multivariate Distributions Chapter 4 Multivariate distributions k ≥ 2 Multivariate Distributions All the results derived for the bivariate case can be generalized to n RV. The joint CDF of X1, X2, …, Xk will have the form: P(x1, x2, …, xk ) when the RVs are discrete F(x1, x2, …, xk ) when the RVs are continuous 1 RS – 4 – Multivariate Distributions Joint Probability Function Definition: Joint Probability Function Let X1, X2, …, Xk denote k discrete random variables, then p(x1, x2, …, xk ) is joint probability function of X1, X2, …, Xk if 1. 0px1 , , xn 1 2. px 1, , xn 1 xx1 n 3. P XXA11,,nn pxx ,, x1,, xAn Joint Density Function Definition: Joint density function Let X1, X2, …, Xk denote k continuous random variables, then n f(x1, x2, …, xk) = δ /δx1,δx2, …,δxk F(x1, x2, …, xk) is the joint density function of X1, X2, …, Xk if 1. fx1, , xn 0 2. fx,, xdx ,, dx 1 11nn A 3. P XXA,, fxxdxdx ,, ,, 111nnn 2 RS – 4 – Multivariate Distributions Example: The Multinomial distribution Suppose that we observe an experiment that has k possible outcomes {O1, O2, …, Ok } independently n times. Let p1, p2, …, pk denote probabilities of O1, O2, …, Ok respectively. Let Xi denote the number of times that outcome Oi occurs in the n repetitions of the experiment. Then the joint probability function of the random variables X1, X2, …, Xk is n! xx12 xk px112,, xnk pp p xx12!! xk ! Example: The Multinomial distribution xx12 xk Note: p12pp k is the probability of a sequence of length n containing x1 outcomes O1 x2 outcomes O2 … xk outcomes Ok n! n xx12!! xk !x12xx k is the number of ways of choosing the positions for the x1 outcomes O1, x2 outcomes O2, …, xk outcomes Ok 3 RS – 4 – Multivariate Distributions Example: The Multinomial distribution nnx 1 nx12 x xk xx12 x3 xk n! nx!! nx x 112 xnx112123123!!! x nx x !! x nx x x ! n! x12!!xx k ! n! xx12 xk px112,, xnk pp p xx12!! xk ! n xx12 xk pp12 pk xx12 xk This is called the Multinomial distribution Example: The Multinomial distribution Suppose that an earnings announcements has three possible outcomes: O1 – Positive stock price reaction – (30% chance) O2 – No stock price reaction – (50% chance) O3 - Negative stock price reaction – (20% chance) Hence p1 = 0.30, p2 = 0.50, p3 = 0.20. Suppose today 4 firms released earnings announcements (n = 4). Let X = the number that result in a positive stock price reaction, Y = the number that result in no reaction, and Z = the number that result in a negative reaction. Find the distribution of X, Y and Z. Compute P[X + Y ≥ Z] 4! xyz pxyz, , 0.30 0.50 0.20 x y z 4 xyz!!! 4 RS – 4 – Multivariate Distributions z Table: p(x,y,z) x y 01234 0 0 0 0 0 0 0.0016 0 1 0 0 0 0.0160 0 0 2 0 0 0.0600 0 0 0 3 0 0.1000 0 0 0 0 4 0.0625 0 0 0 0 1 0 0 0 0 0.0096 0 1 1 0 0 0.0720 0 0 1 2 0 0.1800 0 0 0 1 3 0.1500 0 0 0 0 1400000 2 0 0 0 0.0216 0 0 2 1 0 0.1080 0 0 0 2 2 0.1350 0 0 0 0 2300000 2400000 3 0 0 0.0216 0 0 0 3 1 0.0540 0 0 0 0 3200000 3300000 3400000 4 0 0.0081 0 0 0 0 4100000 4200000 4300000 4400000 z P [X + Y ≥ Z] x y 01234 0 0 0 0 0 0 0.0016 0 1 0 0 0 0.0160 0 = 0.9728 0 2 0 0 0.0600 0 0 0 3 0 0.1000 0 0 0 0 4 0.0625 0 0 0 0 1 0 0 0 0 0.0096 0 1 1 0 0 0.0720 0 0 1 2 0 0.1800 0 0 0 1 3 0.1500 0 0 0 0 1400000 2 0 0 0 0.0216 0 0 2 1 0 0.1080 0 0 0 2 2 0.1350 0 0 0 0 2300000 2400000 3 0 0 0.0216 0 0 0 3 1 0.0540 0 0 0 0 3200000 3300000 3400000 4 0 0.0081 0 0 0 0 4100000 4200000 4300000 4400000 5 RS – 4 – Multivariate Distributions Example: The Multivariate Normal distribution Recall the univariate normal distribution 2 1 x 1 2 fx e 2 the bivariate normal distribution 2 2 1 xxxxxxyy 2 1 212 xxyy fxy, e 2 21xy Example: The Multivariate Normal distribution The k-variate Normal distribution is given by: 1 1 1 2 xμ x μ fx1,, xk fx k /2 1/2 e 2 where x1 1 11 12 1k x x 2 μ 2 12 22 2k xk k 12kk kk 6 RS – 4 – Multivariate Distributions Marginal joint probability function Definition: Marginal joint probability function Let X1, X2, …, Xq, Xq+1 …, Xk denote k discrete random variables with joint probability function p(x1, x2, …, xq, xq+1 …, xk ) then the marginal joint probability function of X1, X2, …, Xq is pxx,, pxx,, 12qq 1 1 n xxqn1 When X1, X2, …, Xq, Xq+1 …, Xk is continuous, then the marginal joint density function of X1, X2, …, Xq is f xx,, fxxdxdx,, 12qq 1 1 nqn 1 Conditional joint probability function Definition: Conditional joint probability function Let X1, X2, …, Xq, Xq+1 …, Xk denote k discrete random variables with joint probability function p(x1, x2, …, xq, xq+1 …, xk ) then the conditional joint probability function of X1, X2, …, Xq given Xq+1 = xq+1 , …, Xk = xk is px 1 ,, xk pxxxx11qq k 11,,qq ,, k p xx,, qkq11 k For the continuous case, we have: fx ,, x fxxxx,, ,, 1 k 11qq k 11qq k f xx,, qkq11 k 7 RS – 4 – Multivariate Distributions Conditional joint probability function Definition: Independence of sects of vectors Let X1, X2, …, Xq, Xq+1 …, Xk denote k continuous random variables with joint probability density function f(x1, x2, …, xq, xq+1 …, xk ) then the variables X1, X2, …, Xq are independent of Xq+1, …, Xk if f xxfxxfx,, ,, ,, x 11111 kq qqkqk A similar definition for discrete random variables. Conditional joint probability function Definition: Mutual Independence Let X1, X2, …, Xk denote k continuous random variables with joint probability density function f(x1, x2, …, xk ) then the variables X1, X2, …, Xk are called mutually independent if f xxfxfxfx11122,, kkk A similar definition for discrete random variables. 8 RS – 4 – Multivariate Distributions Multivariate marginal pdfs - Example Let X, Y, Z denote 3 jointly distributed random variable with joint density function then 2 Kx yz01,01,01 x y z fxyz,, 0otherwise Find the value of K. Determine the marginal distributions of X, Y and Z. Determine the joint marginal distributions of X, Y X, Z Y, Z Multivariate marginal pdfs - Example Solution: Determining the value of K. 111 1,, f x y z dxdydz K x2 yz dxdydz 000 x1 11x3 111 K xyz dydz K yz dydz 0033x0 00 y1 11111y 2 KyzdzKzdz 0032 32 12 y0 if K 1 7 zz2 11 7 KKK 1 340 34 12 9 RS – 4 – Multivariate Distributions Multivariate marginal pdfs - Example The marginal distribution of X. 12 11 f x f x,, y z dydz x2 yz dydz 1 7 00 112 y 1 1222y 12 1 x y z dz x z dz 7200y 0 72 2 1 1222z 12 1 x zx for 0 x 1 74740 Multivariate marginal pdfs - Example The marginal distribution of X,Y. 12 1 f xy,,, f xyzdz x2 yzdz 12 7 0 2 z1 12 2 z xz y 72z0 122 1 x yxy for 0 1,0 1 72 10 RS – 4 – Multivariate Distributions Multivariate marginal pdfs - Example Find the conditional distribution of: 1. Z given X = x, Y = y, 2. Y given X = x, Z = z, 3. X given Y = y, Z = z, 4. Y , Z given X = x, 5. X , Z given Y = y 6. X , Y given Z = z 7. Y given X = x, 8. X given Y = y 9. X given Z = z 10. Z given X = x, 11. Z given Y = y 12. Y given Z = z Multivariate marginal pdfs - Example The marginal distribution of X,Y. 122 1 f12 xy, x y for 01,01 x y 72 Thus the conditional distribution of Z given X = x,Y = y is 12 2 fxyz,, x yz 7 fxy, 122 1 12 x y 72 xyz2 for 0z 1 1 xy2 2 11 RS – 4 – Multivariate Distributions Multivariate marginal pdfs - Example The marginal distribution of X. 122 1 f1 xx for 0 x 1 74 Then, the conditional distribution of Y , Z given X = x is 12 2 fxyz,, x yz 7 fx 122 1 1 x 74 xyz2 for 0yz 1,0 1 1 x2 4 Expectations for Multivariate Distributions Definition: Expectation Let X1, X2, …, Xn denote n jointly distributed random variable with joint density function f(x1, x2, …, xn ) then EgX1 ,, Xn g x,, x f x ,, x dx ,, dx 111nnn 12 RS – 4 – Multivariate Distributions Expectations for Multivariate Distributions - Example Let X, Y, Z denote 3 jointly distributed random variable with joint density function then 12 2 7 x yz01,01,01 x y z fxyz,, 0otherwise Determine E[XYZ]. Solution: 111 12 E XYZ xyz x2 yz dxdydz 000 7 12 111 x 322yz xy z dxdydz 7 000 Expectations for Multivariate Distributions - Example 111 12 12 111 E XYZ xyzx2 yzdxdydz x 322yz xy z dxdydz 7 000 7 000 1142x 1 11 12xx22 3 22 yz y zdydz yz 2 y zdydz 7400 2x 0 7 00 1123y 1 3312yy22 zzdzzzdz2 7200 3y 0 723 1 32zz23 31231717 74 90 749 73684 13 RS – 4 – Multivariate Distributions Some Rules for Expectations – Rule 1 1.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    42 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us