Proposed Design and Feasibility Study of a Hybrid-Electric Propulsion System for a Ten Passenger Aircraft Fredrik Ollas Gestur Ernir Viðarsson Master of Science Thesis KTH School of Industrial Engineering and Management Energy Technology TRITA-ITM-EX 2019:389 Division of Heat and Power Technology SE-100 44 STOCKHOLM Master of Science Thesis TRITA-ITM-EX 2019:389 Proposed Design and Feasibility Study of a Hybrid-Electric Propulsion System for a Ten Passenger Aircraft Fredrik Ollas Gestur Ernir Vidarsson Approved Examiner Supervisor Björn Laumert Jens Fridh Commissioner Contact person Etteplan, Swedish Defence Owe Lyrsell Material Administration (FMV) Erik Prisell i Abstract This study aims to propose a hybridized version of a propulsion system for a 10-passenger aircraft and compare it to a conventional (reference) aircraft which uses a fossil fuelled turbofan for propulsion. The hybridized powertrain includes a fossil fuelled gas turbine, which is only used for producing electricity, coupled in a series configuration with a battery storage, that provide power to two electrically ducted fans. The comparison mainly aims towards total energy consumption and carbon dioxide emissions; hence, these are aimed to be reduced in the hybridized solution. The aircrafts are compared when flying the same pre-defined route that is a 900 km long distance, cruising at an altitude of 7500 m at 150 m/s. Rate of climb, climb speed and descent angle are optimized, with regards to energy demand. The hybridized propulsion system is evaluated in three different scenarios, that is: 2020, Near Future- and Advanced Future scenario, which contain different component properties that address different future predictions. An experiment is conducted with a small scale electrical ducted fan, operating in a wind tunnel, to measure different quantities such as power and thrust. These results are then scaled up and used as design parameters for a proposed fan design that is of sufficient size to propel the hybridized aircraft. The results show that the hybridized concept, at design conditions, proves feasible in all scenarios. The mass of the aircraft increases as the hybridized system is introduced, but nevertheless the fuel consumption decreases where the reduction depends highly on energy density of the batteries. ii Sammanfattning Målet med den här studien är att föreslå en el-hybridiserad version av ett framdrivningssystem för ett passagerarflygplan om 10 personer, och jämföra det med ett konventionellt (referens) flygplan som använder fossildrivna turbofläktmotorer för framdrift. Det el-hybridiserade framdrivningssystemet består utav en fossildriven gasturbin vars syfte är att generera elektricitet, kopplat i en seriell konfiguration med ett batterilager, som förser två elektriskt drivna kanaliserade fläktar. Jämförelsen syftar framförallt till energiförbrukning och koldioxidutsläpp; därav, målet är att reducera dessa i el-hybrid lösningen. Flygplanen jämförs när de presterar samma förutbestämda rutt som är 900 km lång, har en kryssning altitud på 7500 m i 150 m/s. Andra rutt parametrar är optimerade, med hänsyn till energiförbrukning. Det el-hybridiserade framdrivningssystemet är utvärderat i tre olika scenarier, som är: 2020- , Near Future- och Anvanced Future scenario, som alla innebär olika komponentegenskaper som representerar olika framtida förutsägelser. Ett experiment är utfört med en småskalig elektrisk kanaliserad fläkt, som körs i en vindtunnel, för att mäta kvantiteter som effekt och framdrivningskraft. Dessa resultat är sedan skalade upp och använda som designparametrar för en föreslagen fläkt design som är tillräckligt stor för att driva det el-hybridiserade flygplanet. Resultaten visar att det el-hybridiserade konceptet, under designförhållandena, visar sig vara möjlig i alla scenarier. Vikten av flygplanet ökar när det el-hybridiserade konceptet är applicerat, men bränsleförbrukningen minskar ändå, där mängden reducerat bränsle i allra högsta grad beror på energi-densiteten i batterierna. iii Acknowledgements We would like to express our gratitude to our supervisors; Jens Fridh, Erik Prisell and Owe Lyrsell for their valuable support during the work of this project. We would also like to show our special appreciation to researcher at the Heat and Power department at KTH Royal Institute of Technology; Nenad Glodic, and laboratory engineers at the Heat and Power department at KTH Royal Institute of Technology; Leif Pettersson and Göran Arntyr. iv Table of Contents Abstract ................................................................................................................................................................................... i Sammanfattning ................................................................................................................................................................. ii Acknowledgements ......................................................................................................................................................... iii List of figures .................................................................................................................................................................... vii List of tables ........................................................................................................................................................................ ix Nomenclature ...................................................................................................................................................................... x 1 Introduction ................................................................................................................................................................ 1 1.1 Background ....................................................................................................................................................... 1 1.2 Objective ............................................................................................................................................................. 6 1.3 Methodology ..................................................................................................................................................... 7 Scenarios ................................................................................................................................................... 8 Sensitivity Analysis of the Model .................................................................................................... 8 2 Flight route .................................................................................................................................................................. 9 2.1 Take-off ............................................................................................................................................................ 11 2.2 Climb ................................................................................................................................................................. 12 2.3 Cruise ................................................................................................................................................................ 13 2.4 Descent ............................................................................................................................................................. 13 2.5 Optimizing Flight Route ............................................................................................................................ 14 2.6 Design Aspects .............................................................................................................................................. 15 3 Propulsion system ................................................................................................................................................. 17 3.1 Components ................................................................................................................................................... 20 Gas turbine ............................................................................................................................................ 20 Power Electronics .............................................................................................................................. 22 Energy storage .................................................................................................................................... 23 Propeller Type ..................................................................................................................................... 25 3.2 Optimization Model .................................................................................................................................... 25 Operation Strategy............................................................................................................................. 26 3.3 Emission Savings .......................................................................................................................................... 27 4 Experiment ............................................................................................................................................................... 29 4.1 Experimental Setup..................................................................................................................................... 29 Components.........................................................................................................................................
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages107 Page
-
File Size-