5DSLG,2 3&, ([SUHVV DQG *LJDELW (WKHUQHW Pros and Cons of Using These Interconnects in &RPSDULVRQ Embedded Systems 7KH(PEHGGHG)DEULF&KRLFH © Copyright 2005 RapidIO® Trade Association Revision 03, May 2005 Agenda • Interconnect Requirements & Market Focus • Architecture and Protocol • System Level Considerations • Conclusions Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 2 Interconnects Issues In Embedded Systems – Desire for higher performance • Interconnects often bottlenecks – Lower cost (Non-recurrent costs, capital expense, operating costs) • Standards-based development – Modularity & Reuse • Standard interfaces promote reuse across platforms and over time – Common Components • Standards reduce components and complexity – Distributed Processing • Interconnects key to performance – More Communication Standards and Interworking • Alphabet soup and getting worse! – System-wide Interconnects • Backplane and line card (chip-to-chip) Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 3 Interconnect Trends nd 2 Generation Point-to-Point DeviceDevice DeviceDevice – Packet switched – PHY: SERDES differential Switch – Lowest pin count Fabric 1st Generation Point-to-Point DeviceDevice – Packet switched DeviceDevice DeviceDevice – PHY: Source-sync differential – Lower pin count DeviceDevice DeviceDevice 10 GHz Example: HT / P-RIO 3 GHz Example: PCI Ex / DeviceDevice S-RIO Hierarchical Bus DeviceDevice DeviceDevice – Bridged Hierarchy – Broadcast DeviceDevice – PHY: Single-ended BridgeBridge DeviceDevice DeviceDevice Example: PCI / PCI-X 133MHz ce an rm Shared Bus fo er – Single segment DeviceDevice DeviceDevice DeviceDevice DeviceDevice DeviceDevice P – Broadcast Device Device Device Device Device – PHY: Single-ended Device Device Device Device Device – Highest pin count Example: VME 66MHz Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 4 Interconnect Roles • Interconnect roles – Chip-to-chip – Board-to-board (Backplane) Chassis-to-chassis – Chassis-to-chassis Chip-to-chip Board-to-Board Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 5 Market Focus: Gigabit Ethernet • Successor to 100Mbps Ethernet – 10Ge in the wings • First revision standard completed in 1998 10/100 Switch/ Gigabit Links – Copper in 1999 Router – Various MAC-to-PHY Standards defined • Initial application in WAN – Aggregation • High performance switches , routers and serves in LAN backbones – Later WAN to workstations, PCs and laptops • Positioning – Well known – “Safe Choice” Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 6 Market Focus: PCI Express • Successor to PCI 2.3/PCI-X – Driven by Intel and PCISIG – Fully SW/firmware backward compatible to PCI • First revision standard completed in PC & Servers 2002 – Rollout this year in PC infrastructure CPUCPU • x86 chipsets, video cards, NICs – x1, x4, x8 and x16 most common • Initial application in PCs and Servers x16 GPUGPU NorthBrNorthBr DRAMDRAM – Follow-on to AGP8x for 3D graphics HW – GigE, 10GE NICs USB – Storage (RAID, FC), PCI bridges SATA SouthBrSouthBr • Positioning LclBus – Interconnect for PC and Servers x1 space GigEGigE – Embedded if suitable x1 SW ExpExp Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 7 Market Focus: RapidIO • Initially a processor interconnect • First revision standard completed in 1999 – Rollout in processors, bridges and switches – Parallel 8-bit RapidIO @ 500 MHz applied clock • Initial application in embedded Embedded, Networking systems and Telecom – Compute, defense, networking & telecom line cards Data Path Fabric – CPU I/O, Line-card aggregation, Control Plane backplane Fabric – Serial PHY allowed expansion to Host Card Line Card DSP data plane Switch Switch Traffic CPU Traffic CPU Aggregation • Flow control, encapsulation, Aggregation ASIC streams ASIC Data NPU DSP DSP DSP NPU DSP DSP DSP CPU CPU CPU CPU CPU • Positioning Ethernet CPU DSP DSP DSP DSP DSP DSP MEM PHYs DSP DSP DSP – Best solution for embedded PHYs DSP DSP DSP MEM MEM systems MEMy Control – Suitable for both control and data Ethernet / IP ATM / SONET plane Infiniband / Fibrechannel Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 8 Gigabit Ethernet Overview • WAN scale interconnect – Box-to-box, board-to-board, GigE Endpoint chip-to-chip, backplane CPUCPU – Connect world’s computers – Physical layer defined for LAN- DRAMDRAM scale interconnection MAC/PHYMAC/PHY • Closet to computer • 100+ m distance Port 2 • Extensibility End End – Layered OSI Architecture End Port Switch/Switch/ Port End pointpoint 1 RouterRouter 3 pointpoint • Point-to-point packetized architecture Port 0 – Variable packet size – High header overhead EndEnd – 46-1500 byte packet L2 PDU pointpoint – Up to 9000 byte jumbo frames Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 9 Ethernet Protocol: Layer 2 Preamble 4 Preamble SFD 8 Destination Address 12 Destination Address Source Address 16 Source Address 20 Type/Length Packet PDU 24 Packet PDU 278 FCS 282 Inter-Frame Gap 294 Bytes Layer 2 Packet Type: 1500 Byte Max Packet PDU Total = 294 Bytes (256 Byte PDU) Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 10 Ethernet Protocol: UDP w/Priority Tagging Preamble/SFD L2 Header IP Header 8 Bytes 14 Bytes 20 Bytes UDP Header User PDU FCS IFG 8 Bytes 256 Bytes 4 Bytes 12 Bytes 322 Bytes (256 Byte User PDU) UDP Packet Type: 1472 byte User PDU Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 11 Ethernet Protocol: TCP/IP Preamble/SFD L2 Header IP Header 8 Bytes 14 Bytes 20 Bytes TCP Header User PDU FCS IPG 20 Bytes 256 Bytes 4 Bytes 12 Bytes 334 Bytes (256 Byte User PDU) TCP/IP Packet Type: 1460 Byte Max User PDU Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 12 PCI Express Overview • Chassis-scale interconnect CPUCPU – Chip-to-chip, Board-to- board via connector or End Host/Host/ End cabling End Port Root Port End point 0 Root 2 point – Required legacy PCI point ComplexComplex point compatibility Port 1 – Physical layer defined for Upstream board + connector Switch Port • ~40-50 cm + 2 connectors SwitchSwitch P2P • Extensibility P2P P2P P2P – Layered architecture Down Down Down stream stream stream • Point-to-point packetized Port Port Port architecture – Relatively low overhead EndEnd EndEnd EndEnd – Variable size packets pointpoint pointpoint pointpoint – 128-4096 byte PDU Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 13 PCI Express Protocol Rsvd TLP Sequence Number R FMT Type R TC Rsvd 4 T E D P Attr R Length Requester ID 8 Last DW First DW Tag Address[31:16] 12 BE BE Address[15:2] R Packet PDU 16 Packet PDU 20 Packet PDU Optional TLP Digest (ECRC) 272 Optional TLP Digest (ECRC) Cont LCRC 276 280 Bytes LCRC Cont Next Packet/DLLP Memory Write: 4096 Byte Max Packet PDU Total = 278 Bytes (256 Byte PDU) Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 14 RapidIO Overview • Chassis scale interconnect – Chip-to-chip, Board-to-board via connector or cabling Host – Physical layer defined for Host backplane interconnection • ~80-100 cm + 2 connectors Port (Serial) 2 • Extensibility EndEnd Port Port EndEnd SwitchSwitch – Layered architecture pointpoint 1 3 pointpoint • Point-to-point packetized Port architecture 0 – Low overhead – Variable packet size EndEnd – Maximum 256 byte PDU pointpoint – SAR support for 4 K-byte messages Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 15 RapidIO Packet Format: SWRITE AckID Prior tt FTYPE Target ID Source ID 4 0 0 0 0 0 (0 1 1 0) Address 0 XAdd 8 Packet PDU 80 Early CRC Packet PDU 88 266 Bytes (256 Byte PDU) Packet PDU CRC SWRITE Packet Type: 256 Byte Max Packet PDU Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 16 RapidIO Packet Format: Message AckID Prior tt FTYPE Target ID Source ID 4 0 0 0 0 0 (1 0 1 1) Msg Source Msg Letter Mbox Packet PDU 8 length size seg Packet PDU 80 Early CRC Packet PDU 88 Packet PDU CRC 268 Bytes (256 Byte PDU w/2 byte pad) Message Packet Type: 256 Byte Max Packet PDU, 4K w/SAR Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 17 Logical Layer Comparison PCI GigE RapidIO Express Read/Write Read/Write Memory-mapped R/W No Atomics Configuration Configuration Write w/Response Support No No Yes Address Size N/A 32, 64-bits 34, 50, 66-bits Globally Shared Memory No No Yes Up to 4K Messages with Interrupts and Messaging Support No HW SAR support, Event Signaling Doorbells Up to 1500 HW SAR up to 64Kbyte Datagram Support byte user No user payloads payloads Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 18 Transport Layer Comparison GigE PCI Express RapidIO Topologies Any Tree Any 248 (L2) Large 28 (Small) Number of endpoints 232 (IPv4) (Address-based) 216 (Large) 2128 (IPv6) What fields must L2: None TLP, Seq Num, AckID switches modify? IP: TTL, MAC, FCS LCRC Yes Multicast Yes Yes (Message only) L2: Best Effort Guranteed, Delivery Guaranteed IP: Guaranteed Best Effort Revision 03 © Copyright 2005 RapidIO® Trade Association Slide 19 Physical Layer Comparison Parallel Serial GigE PCI Express RapidIO RapidIO 1x, 2x, 4x, 8x, 10 bits Tx/Rx Signal Pairs 4x† 1x, 4x, 8x*, 16x 12x, 16x, 32x 19 bits ~40-50 cm + ~50-80 cm + ~80-100 cm + Channel 100 m cat5 2 connectors 2 connectors 2 connectors 10, 100, 1000 1.25, 2.5, 3.125 Data rate 2.5 GBaud 500-2000 MHz Mbps GBaud 4D-PAM5 Proprietary XAUI Signaling LVDS MLS AC Coupled AC Coupled Clocking Embedded Embedded Clock + Data Embedded Latency Highest Higher Lowest Next Lowest †Tx,Rx are on same wire pairs Revision 03
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages36 Page
-
File Size-