Introduction: Structural Analysis

Introduction: Structural Analysis

INTRODUCTION: STRUCTURAL ANALYSIS ! Deflected Shape of Structures ! Method of Consistent Deformations ! Maxwell’s Theorem of Reciprocal Displacement 1 Deflection Diagrams and the Elastic Curve P fixed support ∆ = 0 θ = 0 -M P roller or rocker θ support ∆ = 0 inflection point +M -M 2 P θ pined support ∆ = 0 -M 3 inflection point • Fixed-connected joint P fixed-connected inflection point joint Moment diagram 4 • Pined-connected joint pined-connected P joint Moment diagram 5 P inflection point Moment diagram 6 P1 C A B D P2 M +M x -M inflection point 7 P1 P2 +M x -M inflection point 8 Method of Consistent Deformations Beam 1 DOF P MA Ax = 0 B A C = A RB y P B A C ∆´B + f BB x RB B A C ∆´ + f R = ∆ = 0 B BB B B 1 9 Beam 2 DOF Compatibility Equations. w ∆´1 + f11R1 + f12R2 = ∆1 = 0 3 ∆´2 + f21R1 + f22R2 = ∆2 = 0 4 1 2 5 = 0 w ∆´ f f R 1 11 12 1 ∆1 0 + = ∆´ f12 f ∆ 2 22 R2 2 ∆´1 ∆´2 + f11 f21 ×R1 1 + f12 f22 ×R2 1 10 Beam 3 DOF Compatibility Equations. P1 w P2 θ´ + f M + f R + f R = θ = 0 1 6 1 11 1 12 2 13 3 1 = ∆´2 + f21M1 + f22R2 + f23R3 = ∆2 = 0 4 2 3 5 ∆´ + f M + f R + f R = ∆ = 0 P1 w P2 3 31 1 32 2 33 3 3 0 θ´ f f f M 1 11 12 13 1 θ1 0 ∆´2 θ´ ∆´3 + 1 ∆´2 f21 f22 f23 R f f + 2 = ∆2 0 1 11 21 f31 ∆´3 f31 f32 f33 R3 ∆3 ×M1 + f f12 22 f32 ×R2 1 + f33 f13 f23 ×R3 1 11 Compatibility Equation for n span. Equilibrium Equations ∆´1 + f11R1 + f12R2 + f13R3 = ∆ 1 ∆´ + f R + f R + f R = ∆ 2 21 1 22 2 23 3 2 Fixed-end force matrix ∆´n + fn1R1 + fn2R2 + fnnRn = ∆n [Q] = [K][D] + [Qf] If ∆1 = ∆2=……= ∆n = 0 ; Stiffness matrix ∆ ´1 f11 f12 f13 R1 0 Solve for displacement [D]; ∆´2 f21 f22 f23 R + 2 = 0 ∆´ f n 1 f n 2 f -1 f n n n R n 0 [D] = [K] [Q] - [Q ] or [∆´] + [f][R] = 0 1 k = ij f [R] = - [f]-1[∆´] ij [fij] = Flexibility matrix dependent on 1 1 1 , , EI EA GJ 12 Maxwell’s Theorem of reciprocal displacements 1=i 2=j 1 EI A B f = f f11 = fii 21 ji dx f = m M ij ∫ i j EI Mi = mi dx = m m ∫ i j EI dx 1 f = m M A B ji ∫ j i EI f22 = fjj f = f dx 12 ij = m m ∫ j i EI M = m j j fij = f ji 13 Example 1 Determine the reaction at all supports and the displacement at C. 50 kN B A C 6 m 6 m 14 SOLUTION • Principle of superposition 50 kN MA B A C 6 m 6 m RA RB = 50 kN ∆´B + x R fBB B -----(1) 1 kN Compatibility equation : ∆'B + f BB RB = 0 15 • Use conjugate beam in obtaining ∆´B and fBB 50 kN A B 300 kN•m Real beam ∆´B 50 kN 6 m 6 m 9000/EI 6 + (2/3)6 = 10 m Conjugate beam 900/EI /EI 900/EI 300 ∆´B = M´B = -9000/EI , 12 kN•m fBB Real beam 1 kN 1 kN 72/EI 12 /EI (2/3)12 = 8 m 576/EI Conjugate beam f = M´´ = 576/EI, BB B 72/EI 16 • Substitute ∆´B and fBB in Eq. (1) 9000 576 + ↑: − + ( )R = 0 EI EI B RB = +15.63 kN, (same direction as 1 kN) 50 kN 300 kN•m ∆´B 50 kN + f 12 kN•m BB x RB = 15.63 kN 1 kN = 1 kN 50 kN B C 34.37 kN•m A 34.37 kN 15.63 kN 17 Use conjugate beam in obtaining the displacement 50 kN 113 kN•m 6 mC 6 m Real Beam ∆ B A C 15.6 kN 34.4 kN 93.6 M (kN•m) x (m) 3.28 m 6 m 12 m -113 93.6/EI Conjugate Beam -113/EI 223/(EI) 281/(EI) M´ 281 223 776 C M ' = (2) − (6) = − C EI EI EI 776 V´ ∆C = M 'C = − , ↓ C 2 m 4 m 223/(EI) EI 18 Example 2 Determine the reaction at all supports and the displacement at C. Take E = 200 GPa and I = 5(106) mm4 10 kN 3EI 2EI A B C 4 m 2 m 2 m 19 10 kN 3EI 2EI A B C 4 m 2 m 2 m = 10 kN ∆´B + fBB x RB 1 kN Compatibility equation: ∆´B + fBBRB = ∆B = 0 20 • Use conjugate beam in obtaining ∆´ B 10 kN 40 kN•m 3EI 2EI A B Real Beam C 4 m 2 m 2 m 10 kN 10 V (kN) 10 + x (m) M x (m) (kN•m) - 40 177.7/EI Conjugate Beam 40/3EI = 13.33/EI 26.66/EI ∆´ = M´ = 177.7/EI B B 21 • Use conjugate beam for fBB 3EI 2EI 8 kN•m A B Real Beam C 1 kN 1 kN 4 m 2 m 2 m V (kN) x (m) - -1 -1 8 4 + M x (m) (kN•m) 4/(3EI)=1.33EI 2.67 8 4/(2EI)=2EI = EI 3EI 60.44/EI 12/EI Conjugate Beam fBB = M´B = 60.44/EI 22 10 kN 3EI 2EI A B C 4 m 2 m 2 m = 10 kN ∆´B + fBB x RB 1 kN Compatibility. equation: ∆´B + fBBRB = ∆B = 0 −177.7 60.44 + ↑: − + ( )R = 0 EI EI B RB = +2.941 kN, (same direction as 1 kN) 23 • The quantitative shear and moment diagram and the qualitative deflected curve 10 kN 16.48 kN•m 3EI 2EI A B ∆ C C 7.06 kN 4 m 2 m 2 m 2.94 kN 7.06 + V (kN) - x (m) -2.94 -2.94 11.76 M 2.33 m (kN•m) + x (m) - 1.67 m -16.48 24 • Use the conjugate beam for find ∆C 10 kN 3EI 16.48 kN•m C 2EI A B Real beam ∆C 7.059 kN 4 m 2 m 2 m 2.941 kN 11.76 2EI 11.76 2.335 m 3EI Conjugate beam 1.665 m 16.48 3EI 3.263 EI 3.263 6.413 −18.85 M´ = (0.555) − (3.222) = ,↓ C EI EI EI 6.413 (1.665)/3=0.555 m EI −18.85 ∆C = M'C = = −18.85 mm,↓ 1.665+(2/3)(2.335) = 3.222 m (200×5) 25 Example 3 Draw the quantitative Shear and moment diagram and the qualitative deflected curve for the beam shown below.EI is constant. Neglect the effects of axial load. 5 kN/m AB 4 m 4 m 26 SOLUTION • Principle of superposition 5 kN/m AB θ θ A 4 m 4 m B = 5 kN/m θ´A θ´B 1 kN•m + × M A αAA αBA + 1 kN•m × M B α AB α Compatibility equations: BB θ A = 0 = θ 'A + f AAM A + f AB M B − − − (1) θ = 0 = θ ' + f M + f M − − − (2) B B BA A BB B 27 • Use formula provided in obtaining θ´A, θ´B, αAA, αBA, αBB, αAB 5 kN/m θ´A θ´B 4 m 4 m 3wL3 3(5)(8)3 60 θ ' = = = A 128EI 128EI EI 7wL3 7(5)(8)3 46.67 θ 'B = = = 1 kN•m 384EI 384EI EI 1 kN•m α α αAB AA BA α 8 m 8 m BB M o L 1(8) 2.667 M o L 1(8) 2.667 α = = = α BB = = = AA 3EI 3EI EI 3EI 3EI EI M L 1(8) 1.333 M L 1(8) 1.333 α = o = = α = o = = BA 6EI 6EI EI AB 6EI 6EI EI Note: Maxwell’s theorem of reciprocal displacement, αAB = αBA 28 • Use conjugate beam for αAA, αBA, αBB, αAB Real Beam 1 kN•m 1 kN•m Real Beam α α α AA BA AB α (1/8) BB (1/8) (1/8) (1/8) 8 m 8 m 4/EI 4/EI 1/EI 1/EI Conjugate Beam Conjugate Beam 2.67/EI 1.33/EI 1.33/EI 2.67/EI − 2.667 −1.333 α = V ' = α = V ' = AA A EI AB A EI 1.333 2.667 α = V ' = α = V ' = BA B EI BB B EI 29 5 kN/m ABCompatibility equation θ θ A 4 m 4 m B 60 2.667 1.333 + + ( )M A + ( )M B = 0 = EI EI EI 5 kN/m 46.67 1.333 2.667 + ( )M + ( )M = 0 + EI EI A EI B 60 46.67 θ ' = θ 'B = A EI EI Solve simultaneous equations, 1 kN•m + M = -18.33 kN•m, + × M A A 1.333 MB = -8.335 kN•m, + 2.667 α BA = V 'B = α AA = EI EI + 1 kN•m × M B 1.333 2.667 α AB = α = EI BB EI 30 MA = -18.33 kN•m, MB = -8.335 kN•m, 5 kN/m 18.33 kN•m AB8.335 kN•m 4 m 4 m RA RB 18.33 − 20(2) + R (8) −8.355 = 0 R = 3.753 kN, + ΣMA = 0: B B 3.753 R = 16.25 kN, + ΣFy = 0: RA + RB − 20 = 0 a 31 • Quantitative shear and bending diagram and qualitative deflected curve 5 kN/m 18.33 kN•m AB8.36 kN•m 16.25 kN 4 m 4 m 3.75 kN 16.25 V diagram 3.25 m -3.75 M 8.08 diagram 6.67 -8.36 -18.33 Deflected Curve 32 Example 4 Determine the reactions at the supports for the beam shown and draw the quantitative shear and moment diagram and the qualitative deflected curve.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    648 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us