A Modern Course in Aeroelasticity

A Modern Course in Aeroelasticity

Solid Mechanics and Its Applications 217 A Modern Course in Aeroelasticity Fifth Revised and Enlarged Edition von Earl H. Dowell 5. überarbeitete und erweiterte Auflage Springer Verlag Berlin; Heidelberg 2014 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 319 09452 6 Zu Leseprobe schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Contents 1 Introduction ........................................ 1 2 Static Aeroelasticity .................................. 3 2.1 Typical Section Model of an Airfoil . 3 2.1.1 Typical Section Model with Control Surface . 8 2.1.2 Typical Section Model—Nonlinear Effects. 13 2.2 One Dimensional Aeroelastic Model of Airfoils . 15 2.2.1 Beam-Rod Representation of Large Aspect Ratio Wing . 15 2.2.2 Eigenvalue and Eigenfunction Approach . 19 2.2.3 Galerkin’s Method . 22 2.3 Rolling of a Straight Wing. 24 2.3.1 Integral Equation of Equilibrium. 24 2.3.2 Derivation of Equation of Equilibrium. 25 2.3.3 Calculation of Cαα ......................... 27 2.3.4 Sketch of Function Sðy1; ηÞ ................... 27 2.3.5 Aerodynamic Forces (Including Spanwise Induction) . 28 2.3.6 Aeroelastic Equations of Equilibrium and Lumped Element Solution Method . 31 2.3.7 Divergence. 32 2.3.8 Reversal and Rolling Effectiveness . 34 2.3.9 Integral Equation Eigenvalue Problem and the Experimental Determination of Influence Functions. 36 2.4 Two Dimensional Aeroelastic Model of Lifting Surfaces . 39 2.4.1 Two Dimensional Structures—Integral Representation . 40 2.4.2 Two Dimensional Aerodynamic Surfaces—Integral Representation . 41 2.4.3 Solution by Matrix-Lumped Element Approach . 42 xvii xviii Contents 2.5 Other Physical Phenomena. 43 2.5.1 Fluid Flow Through a Flexible Pipe . 43 2.5.2 (Low Speed) Fluid Flow Over a Flexible Wall . 46 2.6 Sweptwing Divergence . 47 References. 50 3 Dynamic Aeroelasticity ................................ 53 3.1 Hamilton’s Principle . 54 3.1.1 Single Particle . 54 3.1.2 Many Particles . 56 3.1.3 Continuous Body . 56 3.1.4 Potential Energy . 56 3.1.5 Nonpotential Forces . 59 3.2 Lagrange’s Equations . 60 3.2.1 Example—Typical Section Equations of Motion . 61 3.3 Dynamics of the Typical Section Model of An Airfoil. 64 3.3.1 Sinusoidal Motion. 65 3.3.2 Periodic Motion . 67 3.3.3 Arbitrary Motion . 67 3.3.4 Random Motion . 73 3.3.5 Flutter—An Introduction to Dynamic Aeroelastic Instability. 81 3.3.6 Quasi-Steady, Aerodynamic Theory . 85 3.4 Aerodynamic Forces for Airfoils—An Introduction and Summary . 87 3.4.1 Aerodynamic Theories Available . 91 3.4.2 General Approximations . 94 3.4.3 Slender Body or Slender (Low Aspect Ratio) Wing Approximation. 96 3.5 Solutions to the Aeroelastic Equations of Motion . 97 3.5.1 Time Domain Solutions . 98 3.5.2 Frequency Domain Solutions . 99 3.6 Representative Results and Computational Considerations . 102 3.6.1 Time Domain . 102 3.6.2 Frequency Domain . 104 3.6.3 Flutter and Gust Response Classification Including Parameter Trends . 105 3.6.4 Gust Response . 119 3.7 Generalized Equations of Motion for Complex Structures . 124 3.7.1 Lagrange’s Equations and Modal Methods (Rayleigh-Ritz) . 124 3.7.2 Kinetic Energy . 126 3.7.3 Strain (Potential Elastic) Energy . 127 Contents xix 3.7.4 Natural Frequencies and Modes-Eigenvalues and Eigenvectors . 131 3.7.5 Evaluation of Generalized Aerodynamic Forces . 132 3.7.6 Equations of Motion and Solution Methods . 134 3.7.7 Integral Equations of Equilibrium . 135 3.7.8 Natural Frequencies and Modes . 137 3.7.9 Forced Motion Including Aerodynamic Forces . 140 3.8 Other Fluid-Structural Interaction Phenomena. 151 3.8.1 Fluid Flow Through a Flexible Pipe: “Firehose” Flutter . 151 3.8.2 (High Speed) Fluid Flow Over a Flexible Wall— A Simple Prototype for Plate or Panel Flutter. 154 References. 159 4 Nonsteady Aerodynamics of Lifting and Non-lifting Surfaces .... 161 4.1 Basic Fluid Dynamic Equations . 163 4.1.1 Conservation of Mass . 163 4.1.2 Conservation of Momentum . 164 4.1.3 Irrotational Flow, Kelvin’s Theorem and Bernoulli’s Equation . 165 4.1.4 Derivation of a Single Equation for Velocity Potential . 168 4.1.5 Small Perturbation Theory . 170 4.2 Supersonic Flow . 176 4.2.1 Two-Dimensional Flow . 177 4.2.2 Simple Harmonic Motion of the Airfoil . 177 4.2.3 Discussion of Inversion . 180 4.2.4 Discussion of Physical Significance of the Results . 183 4.2.5 Gusts . 184 4.2.6 Transient Motion . 185 4.2.7 Lift, Due to Airfoil Motion . 186 4.2.8 Lift, Due to Atmospheric Gust . 187 4.2.9 Three Dimensional Flow . 191 4.3 Subsonic Flow . 196 4.3.1 Derivation of the Integral Equation by Transform Methods and Solution by Collocation . 197 4.3.2 An Alternative Determination of the Kernel Function Using Green’s Theorem. 200 4.3.3 Incompressible, Three-Dimensional Flow . 202 4.3.4 Compressible, Three-Dimensional Flow . 206 4.3.5 Incompressible, Two-Dimensional Flow. 211 4.4 Representative Numerical Results . 230 xx Contents 4.5 Transonic Flow. 235 4.6 Concluding Remarks . 260 References. 262 5 Stall Flutter ........................................ 265 5.1 Background . 265 5.2 Analytical Formulation . 266 5.3 Stability and Aerodynamic Work . 268 5.4 Bending Stall Flutter . 269 5.5 Nonlinear Mechanics Description . 271 5.6 Torsional Stall Flutter . 272 5.7 General Comments . 275 5.8 Reduced Order Models . 277 5.9 Computational Stalled Flow . 278 References. 284 6 Aeroelasticity in Civil Engineering........................ 285 6.1 Fundamentals . 287 6.1.1 Vortex-Induced Oscillation. 287 6.1.2 Galloping. 298 6.1.3 Torsional Divergence . 308 6.1.4 Flutter and Buffeting in the Presence of Aeroelastic Effects . 309 6.2 Applications. 316 6.2.1 Suspension-Span Bridges . 316 6.2.2 Tall Chimneys and Stacks, and Tall Buildings . 335 References. 342 7 Aeroelastic Response of Rotorcraft ....................... 349 7.1 Blade Dynamics . 351 7.1.1 Articulated, Rigid Blade Motion . 351 7.1.2 Elastic Motion of Hingeless Blades . 360 7.2 Stall Flutter . 371 7.3 Rotor-Body Coupling . 375 7.4 Unsteady Aerodynamics . 394 7.4.1 Dynamic Inflow . 394 7.4.2 Frequency Domain . 400 7.4.3 Finite-State Wake Modelling . 401 7.5 Summary . 403 References. 404 8 Aeroelasticity in Turbomachines ......................... 409 8.1 Aeroelastic Environment in Turbomachines . 410 8.2 The Compressor Performance Map . 411 Contents xxi 8.3 Blade Mode Shapes.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    10 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us