
Petroleum Systems in “Rift” Basins 34th Annual GCSSEPM Foundation Bob F. Perkins Research Conference December 13-16, 2015 The following abstracts have been received and accepted for our conference. Please check our website periodically for the most up-to-date listing and information. Controls on the Stratigraphic Architecture of Fluvial Sandstone Reservoirs in the Songkhla Basin, Gulf of Thailand Ahmad, Mirza Naseer Lambiase, Joseph J. Do, Toan Manh Tran, Oanh Thi Chulalongkorn University Petroleum Geoscience Program Department of Geology, The Faculty of Science Chulalongkorn University 254 Phyathai Rd., Patumwan, Bangkok 10330 Thailand e-mail: [email protected] Abstract Many of the important Gulf of Thailand reservoirs are fluvial sandstones within the early to late Miocene succession. The fluvial sandstones vary considerably with respect to channel size, orientation and sinuosity, making accurate reservoir characterization difficult as many of them are below seismic resolution. The stratigraphic architecture of the Miocene to Pleistocene succession in the Songkhla Basin, in the SW Gulf of Thailand, was investigated by integrating seismic geomorphology, well logs and biostratigraphic data. The Oligocene to early Miocene depocenter was controlled by syn-rift faulting and was adjacent to large, basin-bounding faults. Oligocene lacustrine sediments are overlain by an early Miocene fluvial succession with sinuous, 0.2 - 2.0 km wide NW-SE channel belts in the basin center. Channel belts became straighter and narrower (0.65 km) and changed orientation to NE-SW in the middle Miocene when the main depocenter shifted eastward after the main phase of rifting ceased. Tidal creeks observed on seismic images supports biostratigraphic data that indicates at least one period of marine influence in the middle Miocene, with the incursion coming from the northeast and suggesting extensive marine deposition. Wide (1.9 km), NW-SE sinuous channels again dominate in the post-rift succession that comprises the top middle Miocene through the Pleistocene. The general temporal variations indicate that tectonics was the main control on channel distribution, morphology and orientation and that relative sea level played a secondary role until at least the very latest Miocene. However, short-lived marine incursions and episodic faulting were important locally. GCSSEPM 34th BFPRC Petroleum Systems in “Rift” Basins 2015 Page 1 of 46 Evolution of a Permian Arid Lake System, Upper Pedra de Fogo Formation, Western Border of the Parnaiba Basin Andrade, Luiz Nogueira, Afonso César Rodrigues da Silva Jr., José Bandeira Cavalcante Universidade Federal do Amazonas Jerônimo de Albuquerque Street, 18, Dom Pedro Manaus Amazonas 69040-470 Brazil e-mail: [email protected] Abstract Stratigraphic and facies analysis in the Filadélfia region (TO), the western of the Parnaíba Basin, allowed redefine the paleoenvironment of the upper portion of the Pedra de Fogo Formation of Permian age. The studied deposits are a series of approximately 100 m thick, predominantly siliciclastic, with subordinate carbonates and evaporites, where 28 were defined sedimentary facies grouped into six facies associations (FA): FA1-Lacustrine with ephemeral river deposits; FA2- Storm wave-influenced lake deposits; FA3-Continental sabkha deposits; FA4-Central lake deposits; FA5-Eolian dunes field deposits; and FA6-Lake/oasis deposits with inunditos. These associations indicate that during Permian, an extensive lacustrine arid system, developed adjacent to eolian dunes fields and continental sabkha, as well as with contributions from ephemeral rivers. Fluvial incursions into lakes propitiated the formation of suspension lobes and sheet flows (FA1). Sabkha plains (FA3) were formed in the marginal portions of the lake that eventually influenced by storms waves (FA2), while central zone was site of intense pelitic deposition (FA4). The low supply of eolian sand in this system resulted in the formation of restricted dune fields (FA5), with development of interdune lakes (oásis), where proliferating giant ferns, sporadically flooded by ephemeral rivers (FA6). The facies associations indicate that the upper part of the Pedra de Fogo Formation was deposited during a hot and arid climate. GCSSEPM 34th BFPRC Petroleum Systems in “Rift” Basins 2015 Page 2 of 46 Nigeria's Frontier Basins - Unrealized Rift System Hydrocarbon Potentials Bako, M. D. Umaru, A. F. M. Nigeria National Petroleum Corporation, Napims, FES, Ikoyi Lagos, Nigeria Adegoke, O. S. c/o Mosunmolu Ltd. The Oceanview Place 4th Floor Alpha Beach Road, Lekki Peninsula, P.O. Box 8066 Marina, Lagos, Nigeria e-mail: [email protected] Abstract Nigeria is under explored and poorly understood Frontier basins include the Nigeria Chad, Bida, Dahomey, Sokoto and Benue basins. They have their origins in the multi-phased rift systems that were formed during the breakup of Gondwanaland in Early Cretaceous between the Pan African (750-550 Ma) to Holocene period. The rifting is widely attributed to the stretching and subsidence of the African crustal blocks accompanied by reactivated plate movements in the Early Tertiary. These basins are part of the West African Rift Subsystem (WAS) of the West and Central African Rift Systems (WCARS). The Chad Basin, the largest, is an intracratonic rift basin with an area of 2,335,000 sq. km that covers Chad, Niger, Cameroun Republics and the northeastern part of Nigeria. Only about 10% of the Chad Basin lies within Nigeria (Fig. 1). It is a two-stage rift basin comparable to the petroliferous south Chad Basins (Doba, Doseo) with (a) a Lower Bima early rift stage generated by EW gravity faults (Albo- Aptian) followed by an Upper Bima Sag phase (Albian); and (b) an Upper Cretaceous rift phase with deposition of lower Fika source rocks followed by a mild Tertiary Sag phase corresponding to the sedimentation of Lower Kerri Kerri and Chad formations. Of the 23 dry wells drilled in the basin, only the Wadi-1 and Kinasar-1 wells recorded non-commercial gas accumulations. Three possible petroleum systems have been muted. The petroleum systems of this and other Nigeria Frontier basins are discussed. Suggestions are made for the unsuccessful search for hydrocarbons in these basins. GCSSEPM 34th BFPRC Petroleum Systems in “Rift” Basins 2015 Page 3 of 46 A Systematic Approach to Analogue Comparison to Identify Potential New Exploration Opportunities Beglinger, Suzanne E. Statoil Svanholmen 8 Stavanger, Norway NO-4035 e-mail: [email protected] Abstract Although every basin in the world is unique, they can still be classified according to their structural genesis and evolutionary history. This classification is based on breaking basins down into their tectonostratigraphic basin cycles, or megasequences. By defining their characteristics with respect to the development of source-, reservoir- and seal rocks, we can compile a dataset of potential analogues. This dataset will allow us to identify the key combination of elements and processes that result in an effective exploitable petroleum system, and assist in the evaluation of exploration opportunities in un- and under- explored rift basins. Several tools can be used in such an analysis: the trajectory plot, tectonostratigraphies, the petroleum system flow diagram, events charts, creaming curves, field size distribution diagrams, and areal field distribution maps. I will introduce you to the world of analogue comparison of basins, megasequences and petroleum system elements, and discuss how to apply the different tools to identify potential new exploration opportunities in the South Atlantic, like in the Gabon Coastal- and Almada-Camamu basins. GCSSEPM 34th BFPRC Petroleum Systems in “Rift” Basins 2015 Page 4 of 46 An Appraisal of Major Hydrocarbon-Bearing Deltas Using Deep, Regional Reflection Seismic Data Bellingham, Paul Graham, Rod Radovich, Barbara Pindell, James McDermott, Kenneth Horn, Brian ION Geophysical 1st Floor, Integra House Vicarage Road Egham Surrey, UK TW20 9JZ e-mail: [email protected] Abstract The world’s major delta systems are rich petroleum provinces which have been studied extensively. However, the thick sedimentary sections and frequent strong structuration have meant that understanding of the deep architecture has remained elusive. Recent deep, long offset regional seismic data and state-of-the-art depth imaging over a number of these deltas has provided a valuable additional dataset. Here we look at the additional constraints which can be placed on the petroleum potential of these areas from these seismic data. Through analysis of the Niger, Congo, Rovuma and Krishna-Godavari deltas, we address the following questions: 1. How the petroleum systems of deltas may be affected by the underlying crustal type? 2. When deltas are emplaced over oceanic crust, what are the implications of the age of ocean crust at time of delta emplacement on the thermal and maturation history? 3. What are the implications of delta loading on migration pathways? 4. What are the implications of basement features such as sea-mounts on delta development and the petroleum potential? 5. How do gravity driven detachment systems develop and how do they impact maturation, migration and trapping? We also try to account for the exploration challenges of the outer Orinoco system through investigation of maturation and migration models which indicate that thermogenic hydrocarbons have not yet reached drillable traps GCSSEPM 34th BFPRC Petroleum Systems in “Rift” Basins
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages46 Page
-
File Size-