Non-Deterministic Space

Non-Deterministic Space

ComputabilityandComplexity 19-1 ComputabilityandComplexity 19-2 Non-deterministicMachines Recallthatif NT isanon-deterministicTuringMachine,then NT (x) denotesthetreeofconfigurationswhichcanbeenteredwithinput x, and NT accepts xifthereissomeacceptingpathin NT (x) Non-DeterministicSpace Definition Thespacecomplexityofanon-deterministicTuring Machine NT isthefunctionsuchthatNSpace NT NSpace NT (x) istheminimalnumberofcellsvisitedinanacceptingpathof NT (x)ifthereisone,otherwiseitistheminimalnumberofcellsin therejectingpaths (Ifnotallpathsof NT (x)halt,thenisundefineNSpace (x) d) ComputabilityandComplexity NT AndreiBulatov ComputabilityandComplexity 19-3 ComputabilityandComplexity 19-4 NondeterministicSpaceComplexity DefinitionofNPSPACE Definition Foranyfunction f,wesaythatthenondeterministicspace Definition complexityofadecidablelanguage Lisin O(f)ifthereexists NPSPACE = NSPACE[ nk ] anondeterministicTuringMachine NT whichdecides L,and U > k≥0 constantsandn0 csuchthatforallinputs xwith | x | n0 ≤ NSpace NT (x) cf (| x |) Definition Thenondeterministicspacecomplexityclass NSPACE[ f]is definedtobetheclassofalllanguageswithnondeterministic spacecomplexityin O(f) ComputabilityandComplexity 19-5 ComputabilityandComplexity 19-6 ≥≥≥ Savitch’sTheorem Proof(for s(n) n) •Let Lbealanguagein NSPACE[ s] Unliketime,itcaneasilybeshownthatnon-determinismdoesnot •Let NT beanon-deterministicTuringMachinethatdecides L reducethespacerequirementsverymuch: withspacecomplexity s •Chooseanencodingforthecomputation NT (x)thatuses ks (| x|) symbolsforeachconfiguration Theorem(Savitch) If s(n)≥log n,then •Letbetheinitialconfiguration,andC betheacceptingC 2 0 a NSPACE[ s] ⊆ SPASE[ s ] configuration •DefineaBooleanfunction reach (C,C′,j)whichis true ifandonlyif configuration C′canbereachedfromconfiguration Cinatmost 2 j Corollary steps PSPACE =NPSPACE •Todecidewhetherornot x∈Lwemustdeterminewhetherornot isreach (C0 ,Ca ,ks (| x |)) true 1 ComputabilityandComplexity 19-7 ComputabilityandComplexity 19-8 LogarithmicSpace 2 Wecancalculatereach (C0 ,Ca ,ks (| xinspace,|)) O(s(| x |) ) usingadivide-and-conqueralgorithm: Sincepolynomialspaceissopowerful,itisnaturaltoconsidermore restrictedspacecomplexityclasses reach (C,C', j) 1. If j=0 thenif C=C',or C'canbereachedfrom Cin one Evenlinearspaceisenoughtosolve Satisfiability step,thenreturn true ,elsereturn false . 2. Foreachconfiguration C'' ,if reach (C,C'' ,j–1) and reach (C'' ,C',j–1), thenreturn true . Definition = 3. Return false L SPACE[log n] NL = NSPACE[log n] Thedepthofrecursionis O(s(| x|)) andeachrecursivecallrequires O(s(| x|)) spacefortheparameters ComputabilityandComplexity 19-9 ComputabilityandComplexity 19-10 ProblemsinLandNL Examples(L) Whatsortofproblemsarein Land NL ? Palindromes : Weneedtokeeptwocounter Inlogarithmicspacewecanstore: = k k ∈ •afixednumberofcounters(uptolengthofinput) L 0{1 | k N } Firstcountthenumberof 0s,thencount 1s,subtractingfromthe •afixednumberofpointerstopositionsintheinputstring previousnumberonebyone.Iftheresultis 0,accept; otherwise,reject. Thereforeindeterministiclog-spacewecansolveproblemsthat requireafixednumberofcountersand/orpointersforsolving; innon-deterministiclog-spacewecansolveproblemsthat Brackets (ifbracketsinanexpressionpositionedcorrectly): requireafixednumberofcounters/pointersforverifyinga Weneedonlyacounterofbracketscurrentlyopen.Ifthis solution countergetsnegative,reject;otherwiseacceptifandonlyifthe lastvalueofthecounteriszero ComputabilityandComplexity 19-11 Examples(NL) Thefirstproblemdefinedonthiscoursewas Reachability¹ Thiscanbesolvedbythefollowingnon-deterministicalgorithm: •Defineacounterandinitializeittothenumberofverticesinthegraph •Defineapointertoholdthe``currentvertex’’andinitializeittothe startvertex •Whilethecounterisnon-zero -Ifthecurrentvertexequalsthetargetvertex,returnyes -Non-deterministicallychooseavertexwhichisconnectedto thecurrentvertex -Updatethepointertothisvertexanddecrementthecounter •Returnno ¹Alsoknownas Path 2.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    2 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us