Carbon neutral scenarios for Växjö municipality Author: Samar Ahmed Supervisor: Truong Nguyen Examiner: Michael Strand Course code: 4BT04E Department: Department of Built Environment and Energy Technology Semester: Spring 2021 Abstract Sweden’s municipalities are leading the green energy transition, in this study, a techno- economic evaluation was done for a number of carbon neutral scenarios for Växjö municipality’s future energy system, situated within Sweden’s projected energy demand development in 2030 and 2050. The municipality’s partially decentralized energy system relies heavily on interconnected electricity supply from the national grid, and fuels imports from other parts of Sweden. It was a matter of question: in which ways will future demand changes induce supply changes, and whether a future carbon neutral energy system will be less costly in a sustained-electricity supply condition? To answer this, a balanced energy reference system for the municipality was created from an actual energy balance, using an hour-by-hour dynamic energy analysis tool EnergyPlan. Afterward, a future energy demand projection for Växjö was stemmed from the Swedish Energy Agency (SEA) sustainable future scenarios for Sweden, based on an average inhabitant energy demand. Modelling results for Växjö carbon neutral scenarios showed that Växjö energy system will be sufficient to supply future heat demand but not electricity demand, nor transport and industrial fuels. While in the short-term being carbon neutral is more economically attainable without changes in electricity supply technologies, a projected electricity price and consumption increase, change the outcomes for a carbon neutral scenario based on Intermittent Renewable Energy (IRE) to be less costly in the long term. Key words: Carbon neutral, Carbon Capture and Storage, Intermittent Renewable Energy, Electrification. i Acknowledgments I would like to thank my supervisor Truong Nguyen for his advice, critical comments and continuous help in every step of this thesis work. Much thanks to Henrik Johansson in Växjö municipality, for providing all available data and supporting my ideas. Huge gratitude for the Swedish Institute (SI) for granting me the (SISGP) scholarship to pursue and complete this program. To Khalil’s soul, my brother, for his kind words are still resonating in my ears to lift me up to carry on. May we meet again (Brother Gamed). ii Table of contents Abstract ………………………………………………………….……….……………..…...i Acknowledgments……………………………….…………………………..…………..…….ii Table of contents ……………………….………………….……..……….….………..……...iii List of tables ……………..……………………….…………………………..…….………..iv List of figures ……………………………………………….………………..…….………….v Abbreviation ……………………………….…………….…………………..…….…..….......vi 1 INTRODUCTION .............................................................................................................................................. 1 1.1 BACKGROUND ............................................................................................................................................... 1 1.2 PURPOSE AND OBJECTIVES ............................................................................................................................ 3 1.3 LIMITATIONS ................................................................................................................................................. 3 2 LITERATURE REVIEW .................................................................................................................................. 5 2.1 ENERGY SYSTEM COMPONENTS ..................................................................................................................... 5 2.2 SUSTAINABLE ENERGY SYSTEMS ................................................................................................................... 7 2.3 CASE STUDY ................................................................................................................................................ 10 3 METHODOLOGY ........................................................................................................................................... 16 3.1 METHODS AND STEPS .................................................................................................................................. 16 3.2 ENERGY SIMULATION TOOL ......................................................................................................................... 17 4 IMPLEMENTATION ..................................................................................................................................... 19 4.1 REFERENCE BALANCED ENERGY SYSTEM .................................................................................................... 19 4.1.1 Data and assumptions ........................................................................................................................ 19 4.1.2 Reference model validation ................................................................................................................ 23 4.2 SCENARIOS DEVELOPMENT.......................................................................................................................... 26 4.2.1 Data and assumptions ........................................................................................................................ 26 4.2.2 Added supply technologies ................................................................................................................. 32 4.2.3 Technologies cost ............................................................................................................................... 35 5 RESULTS AND DISCUSSION ...................................................................................................................... 37 6 CONCLUSION................................................................................................................................................. 42 REFERENCES .................................................................................................................................................... 44 APPENDIX .......................................................................................................................................................... 49 iii List of tables Table 1: Reference model inputs from Växjö energy balance. ................................................ 20 Table 2: CHP and HO details ................................................................................................... 22 Table 3: Biogas production and upgrading plants. ................................................................... 23 Table 4: SEA Projected electricity prices ................................................................................ 28 Table 5: Sweden and Växjö projected population growth. ..................................................... 29 Table 6: Developed SEA scenarios demand inputs for Växjö. ................................................ 31 Table 7: Wind and Solar PV capacities .................................................................................... 33 Table 8: CCS and electrolyser details ...................................................................................... 34 Table 9: Developed scenarios supply technologies costs ......................................................... 36 Table 10: Carbon capture electrical penalty ............................................................................. 39 Table 11: Transport sector fuel distribution in developed SEA scenarios ............................... 49 Table 12: Heat demand distribution in developed SEA scenarios ........................................... 49 Table 13: Available statistics on numbers of vehicles in Växjö (lansstyrelsen, 2020). ........... 50 Table 14: Classification of vehicles per type of fuel used (lansstyrelsen, 2020). .................... 50 iv List of figures Figure 1: Sweden energy balance in 2018 (Energimyndigheten., 2020). ................................................ 2 Figure 2: Thesis outline. .......................................................................................................................... 4 Figure 3: Conventional energy system (Lund et al.,2016). ..................................................................... 6 Figure 4: Sustainable or smart energy system (Lund et al.,2016). .......................................................... 6 Figure 5: Växjö municipality location (Google maps, 2021). ............................................................... 10 Figure 6: Historical energy balance in Växjö 1993-2019(Source: Växjö municipality environmental department) ........................................................................................................................... 11 Figure 7: Fuels and energy supplied to public sector (Source: Växjö municipality environmental department) ........................................................................................................................... 12 Figure 8: Fuels and energy supplied to residential sector (Source: Växjö municipality environmental department) ........................................................................................................................... 12 Figure 9: Fuels and energy distributed to transport sector (Source: Växjö municipality environmental department) ........................................................................................................................... 13
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages57 Page
-
File Size-